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Abstract—Intelligent transportation systems, e.g., Uber, have
become an important tool for urban transportation. An important
problem is k nearest neighbor (kNN) search on moving objects
with road-network constraints, which, given moving objects on
the road networks and a query, finds k nearest objects to the
query location. Existing studies focus on either kNN search on
static objects or continuous kNN search with Euclidean-distance
constraints. The former cannot support dynamic updates of
moving objects while the latter cannot support road networks.
Since the objects are dynamically moving on the road networks,
there are two main challenges. The first is how to index the
moving objects on road networks and the second is how to find
the k nearest moving objects. To address these challenges, in this
paper we proposes a new index, V-Tree, which has two salient
features. Firstly, it is a balanced search tree and can support
efficient kNN search. Secondly, it can support dynamical updates
of moving objects. To build a V-Tree, we iteratively partition the
road network into sub-networks and build a tree structure on
top of the sub-networks. Then we associate the moving objects on
their nearest vertices in the V-Tree. When the location of an object
is updated, we only need to update the tree nodes on the path
from the corresponding leaf node to the root. We design a novel
kNN search algorithm using V-Tree by pruning large numbers
of irrelevant vertices in the road network. Experimental results
on real datasets show that our method significantly outperforms
baseline approaches by 2-3 orders of magnitude.

I. INTRODUCTION

Intelligent transportation systems, e.g., Uber, have been
emerged as an important transportation tool. For drivers, Uber
represents a flexible new way to earn money. For cities,
Uber helps strengthen local economies, improves access to
transportation, and makes streets safer. For passengers, Uber
helps them easy to get a cab. Thus Uber has been widely used
in our daily life.

An important problem in Uber is K nearest neighbor
(kNN) search on moving objects on road networks, which finds
the k nearest objects to a given query location. Existing studies
focus on either kNN search on static objects [22], [16], [25],
[10], [31], [30], [22] or continuous kNN search with Euclidean
distance constraint [26], [11], [23], [27], [5], [9], [6], [17],
[28], [29], [8]. The former cannot support dynamic updates
of moving objects, because it is rather expensive to update
the index. The latter cannot efficiently compute the distance
on road networks. Thus they cannot efficiently address this
problem. For example, Uber in China took more than 180
seconds to find the kNN results for each query.

Two factors make the problem more challenging. Firstly,
the objects are dynamically moving on the road networks.
For example, there are more than 60K taxies in Beijing and
the locations of cars are updated every second. Thus one
challenge is how to index the moving objects on road networks.
Secondly, there are lots of queries. For example, in Beijing

there are 1 million queries each day and in the peak time
there are 100K queries in each second. Thus another challenge
is how to find the kNN moving objects efficiently.

To address these challenges, in this paper we proposes a
new index, V-Tree, which has two salient features. Firstly,
it is a balanced search tree and can support efficient kNN
search. Secondly, it can support dynamical updates of moving
objects. To achieve this goal, we iteratively partition the road
network into sub-networks and build a tree structure on top
of the sub-networks, where the tree nodes are sub-networks.
Then we associate the moving objects to their closet vertices
on the road networks. To facilitate the kNN computation, we
also keep the shortest distances from some important vertices
(called borders) to the vertices with associated objects. When
the location of an object is updated, we only need to update the
tree nodes on the path from the corresponding leaf node to the
root. We also design a novel kNN search algorithm using the
borders to efficiently compute k nearest objects, which adopts
a best-first method and can prune many irrelevant objects.

To summarize, we make the following contributions.

1) We devise an efficient and scalable tree index for
moving objects on road network, called V-Tree. The
space complexity of V-Tree is O(log |V |·|V |), where
|V | is the number of vertices in the road network.

2) We propose an efficient update strategy to support
updates of moving objects. The average time com-

plexity is O(
|V |min (log |M|, log |V |)

|M| ), where |M|
is the number of objects moving on the road network.

3) We devise a novel kNN search method using V-
Tree to compute k nearest objects. The average time

complexity is O(
k · |V |min (log |M|, log |V |)

|M| ).

4) We have conducted extensive experiments to eval-
uate our method on real datasets. Experimental re-
sults show that our method significantly outperforms
baseline approaches by 2 orders of magnitude. We
also publicize our source code at https://github.com/
TsinghuaDatabaseGroup/VTree.

The structure of this paper is organized as follows. We first
formulate the problem in Section II. The V-Tree is proposed
in Section III, and we devise an efficient kNN search algorithm
in Section IV. Experimental results are reported in Section V.
We review related work in Section VI and conclude the paper
in Section VII.

II. PRELIMINARIES

Road Network. We model a road network as a directed
weighted graph G = 〈V,E〉, where V is a set of vertices
and E is a set of edges. Each edge (u, v) ∈ E (u, v ∈ V )
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has a weight, which is the travel cost from u to v (e.g.,
distance, travel time.). Given a path from u to v, the distance
of this path is the sum of weights of the edges along the
path. Let SPath(u, v) denote the shortest path from u to v and
SPDist(u, v) denote the shortest-path distance. We use graph
and road network interchangeably for ease of presentation.

Moving Objects. Each object (e.g., vehicle) moving on the
road network is represented by m = 〈t, p〉, where p is the
geo-location of m at time t. Note the locations of objects are
updated periodically (e.g., every second).

We suppose moving object is driving on the road. We can
utilize existing techniques [4], [24], [19] to map an object
to an edge on the road. Suppose m is driving on edge
e = (u, v) and its distance to v is δ = SPDist(m, v). We
use m = (t, (u, v), δ) to denote the object. The shortest-
path distance from a moving object m to a vertex x, denoted
by SPDist(m,x), can be computed by δ + SPDist(v, x).
In Figure 1, the distance from m1 to v7 is computed by
summing up the δ from m1 to v5, and SPDist(v5, v7), i.e.,
SPDist(m1, v7) = 80 + 180 = 260.

v1
v3

v3

v5 v6

v4

v9
v7
v8

m1
80 180

Fig. 1. Example of Objects.

kNN Query. Given a graph DAG, a moving object set M, a
kNN query q = 〈v, k〉, where v is a query location, and k is
an integer. The answer of q is a set of k nearest objects to the
query location such that.
(1) The size of R is k, i.e., |R| = k;
(2) Each answer is an object, i.e., R ⊆M.
(3) ∀x ∈ R, ∀y ∈M−R, SPDist(v, x) ≤ SPDist(v, y).

Similar to existing works [4], [24], [19], we assume that
the query location of q is at a vertex. If the query location is
not at a vertex, then (i) if it is on an edge, we find the top-k
answers to the two vertices of edge e, and then select the top-k
answers from these 2k candidates; (ii) if it is not on an edge,
we find the closest edge e to the query location using existing
technique [4], [24], [19] and then utilize the method in case
(i) to compute the top-k answers. Thus in the paper, we focus
on the case that the query location is at a vertex.

III. THE V-Tree INDEX

We propose a tree index to support kNN search on mov-
ing objects, called V-Tree. We first formally define V-Tree
(Section III-A) and then discuss how to construct V-Tree
(Section III-B). Next we present utilizing V-Tree to compute
shortest-path distance (Section III-C). We close this section by
discussing how to update V-Tree (Section III-D).

A. V-Tree

Before we introduce the V-Tree structure, we first define
some concepts.

Definition 1: (Graph Partition). Given a graph G = 〈V,E〉,
where V is the vertex set and E is the edge set of G, f
is the fanout, we partition G into f subgraphs, i.e., G1 =

7
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Fig. 2. Road Network Partition.

〈V1, E1〉, G2 = 〈V2, E2〉, ..., Gf = 〈Vf , Ef 〉, such that
(1) Completeness on vertices: ∪1≤i≤fVi = V ;
(2) Disjoint on vertices: For i 	= j, Vi ∩ Vj = φ; and
(3) Completeness on edges for vertices in the same subgraph:
∀u, v ∈ Vi, if (u, v) ∈ E, (u, v) ∈ Ei.

We build a tree hierarchy based on the graph partition.
Initially the root is the graph G. Then we iteratively partition
the graph G as follows. We partition G into f subgraphs G1,
G2,..., Gf , which are taken as G’s children. These f subgraphs
are called child subgraphs of G. The child-subgraph set of G
is denoted by C(G). G is called the parent graph of its child
subgraphs. The parent graph of Gi is denoted by Gp

i . Next
we iteratively partition Gi, and take its child subgraphs as its
children. We terminate if Gi has less than τ vertices, where
τ is a threshold. Figure 2 shows an example of this iterative
graph partition process, with an original road network graph
G0 = G, f = 2 and τ = 4. G0 is partitioned into two child
subgraphs G1 and G2, so C(G0) = (G1, G2) and Gp

1 = G0.

Definition 2 (Boundary Vertex): Given a graph G =
〈V,E〉, its subgraph Gi, a vertex βj in Gi is called a boundary
vertex if ∃(βj , v) ∈ E and v is not in Gi.The boundary vertex
set of Gi is denoted by B(Gi).

Given two vertices u and v in G, if v ∈ Gi and u /∈
Gi, then the shortest path from u to v must bypass boundary
vertices of Gi, because if v connects to u, it must go out Gi

(i.e., bypass a boundary vertex) as stated in Lemma 1 .

Lemma 1: Given a subgraph Gi = 〈Vi, Ei〉 and two
vertices vi ∈ Vi, vj /∈ Vi, the shortest path from vj to vi must
contain a boundary vertex β in Gi such that SPDist(vj , vi) =
SPDist(vj , β) + SPDist(β, vi).

Proof: The proofs of Lemmas and Theorems can be found
in our technical report [1].

Accordingly, given two subgraphs Gi, Gj and two vertices
vi ∈ Gi and vj ∈ Gj , there must exist two boundary vertices
βi ∈ Gi and βj ∈ Gj such that

SPDist(vj , vi) = SPDist(vj , βj)+SPDist(βj , βi)+SPDist(βi, vi).

To efficiently compute the shortest-path distance, we can
precompute the distances between vertices and boundary ver-
tices, and between boundary vertices and boundary vertices.
However this involves huge storage space. To address this
issue, we only precompute the shortest-path distances between
vertices for leaf nodes, and the shortest-path distances between
boundary vertices and boundary vertices for non-leaf nodes
with the same parents. We will show that the shortest path
between two vertices can be efficiently computed based on
these precomputed distances in Section III-C.

612612612598598598598598598610610610
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Fig. 3. V-Tree Structure (Square Vertices are Borders of Child-subgraphs in Different Levels).

Distance Matrix. Each leaf subgraph maintains a distance
matrix D of all vertices in the subgraph, i.e., Di,j =
SPDist(vi, vj) for all vi and vj in the subgraph. Each non-
leaf subgraph maintains a distance matrix D of all boundary
vertices of its child subgraphs. i.e., Di,j = SPDist(βi, βj),
where βi, βj are boundary vertices of its child subgraphs. For
ease of presentation, let B(Gi) denote the set of boundary
vertices of Gi’s child subgraphs, and we call each boundary
vertex in B(Gi) is a border.

Definition 3 (Border): Given a non-leaf subgraph Gi, a
vertex βi in Gi is called a border if it is a boundary vertex of
one of its child subgraph. Given a leaf subgraph, each of its
boundary vertex is a border.

As shown in Figure 2, B(G3) = {v2, v3, v4}, B(G4) =
{v5, v6}, B(G1) = {v2, v3, v4, v5, v6}. The shortest path from
v1 to v8 bypasses borders v3 of G1 and v6 of G4.

Next, we discuss how to associate the moving objects into
the vertices.

Definition 4 (Active and Inactive Vertex): Given an object
m on an edge e which is moving to the vertex v, we call m an
active object of vertex v and call v an active vertex. A vertex
is active if it has active objects; inactive otherwise.

For example, in Figure 2, m1 is on edge e(v1, v4) and
moving to v4 with an offset of 0. m1 is an active object of v4
and v4 is an active vertex. Vertex v1 is inactive as it has no
active object. The distance of the shortest path from an object
m to any vertex u ∈ G, SPDist(m,u), is the summation of
the offset δ to vertex v that m is driving to and SPDist(v, u),
i.e., SPDist(m,u) = δ + SPDist(v, u).

Definition 5 (Local Nearest Active Vertex-LNAV): Given a
vertex u in a subgraph Gi, an active vertex v in Gi is called
the local nearest active vertex (LNAV) if v has the minimum
distance to u among all the active vertices in Gi.

For example, in Figure 2, v4, v5, and v8 are active vertices.
The LNAV of v3 in G3 is v4; in G1, the LNAV of v3 is v8.

Note that the global nearest active vertex (GNAV) of u may
be not in Gi. We use LNAV instead of GNAV because it is rather
expensive to compute and update GNAV while LNAV is easy
to maintain and update. More importantly, we can efficiently

compute GNAV based on LNAV which will be discussed in
Section IV.

LNAV Table L. For each non-leaf subgraph Gi, we store the
LNAV for all the borders in the subgraph in a NAV table, denoted
by Li. The LNAV table has two columns: the LNAV and the
distance to LNAV. For each border β in subgraph Gi, Li[β].γ
and Li[β].δ keep the NAV of β in Gi and the distance to β,
respectively.

For example, in Figure 2, v3 is a boundary vertex of G3,
the LNAV to v3 in G1 is v8, so L1[v3].δ = 6 and L1[v3].γ = v8.
We will discuss later that the LNAV table in each subgraph can
be updated efficiently in Section III-D.

Active Object Table A. For each leaf subgraph, we maintain
an active object table A. For each vertex v in the leaf subgraph
Gi, we use Ai[v] to keep its active objects, where each entry is
〈m, δ〉 to represent an active object and its offset to its active
vertex.

Based on the above notations, next we are ready to define
the V-Tree.

Definition 6 (V-Tree): A V-Tree of a road network G is
a balanced search tree that has the graph partition hierarchy
and satisfies the following properties.

(1) Each node in V-Tree corresponds to a subgraph. Each
non-leaf node has f children. Each leaf node has less than τ
vertices.

(2) Each node also maintains a distance matrix D. Each leaf
node maintains the distance matrix for its vertices while each
non-leaf node maintains the distance matrix for its borders.

(3) Each node maintains a LNAV table L. The leaf nodes
maintain the LNAV for all vertices in the leaf nodes while the
non-leaf nodes maintain the LNAV for its borders.

(4) Each leaf node maintains an active object table A, which
maintains the active objects for each vertex in the leaf node.

For example, Figure 3 shows the V-Tree of the road
network and moving objects in Figure 2 with f = 2 and τ = 4.
Each non-leaf node stores a LNAV table (on the right or below
the node). The rows in green are borders taking v4 as the LNAV,

613613613599599599599599599611611611



TABLE I. A LIST OF NOTATIONS USED IN THE PAPER

Notation Definition
G = 〈V,E〉 Graph G with vertex set V and edge set E
M Set of Moving Objects
B(Gi) Boundary vertex set of Gi

B(Gi) Border set of Gi

SPDist(a, b) Shortest path distance from a to b
D Distance matrix
Di,j SPDist(βi, βj)
A Active object table
LNAV Local nearest active vertex
Li LNAV table of Gi

Li[β].γ NAV of β in Gi

Li[β].δ The distance from Li[β].γ to β
Gp

v Parent graph of Gv

f Fanout of V-Tree
τ Maximum number of vertices in a leaf node

to which m1 is driving to. Similarly, the rows in yellow have
v5 as LNAV.

Space Complexity of V-Tree. Given a graph G with |V |
vertices and |M| objects, the space complexity of V-Tree is
O(|M|+ log |V | · |V |).

Table 1 summarizes a list of essential notations used in this
paper. (Some notations will be introduced later.)

B. V-Tree Construction

Tree Hierarchy. It aims not only to partition the graph
to equal-size subgraphs, but more important to ensure the
subgraphs have small size of borders in each level. Based on
the planar separator theorem [18], given a planar graph with
|V | vertices, if we partition it into f subgraphs, the number of

boundary vertices of the subgraphs is O(
√|V |). We divide the

full graph into f equal-sized subgraphs by a famous multilevel
algorithm [15], which can make each subgraph have almost the
same size and a small number of borders. Specifically, we first
partition the full-graph to f equal-sized subgraphs. And for
each subgraph, we divide it to f equal-sized subgraphs. The
partition terminates until the number of vertices contained in
the subgraph is less than or equal to τ .

Distance Matrix D. It computes the shortest-path distances
between all the borders for each non-leaf subgraphs and the
shortest-path distances between all the vertices of the leaf
subgraphs. The naive method is to compute the distance of
vertices pair by pair. The construction complexity of this
method is too high to scale to large road networks. To address
this issue, we use the bottom-up method to compute the
matrix by sharing the computations [31], [30], and the time
complexity is O(|V |1.5).
Active Object Table A. For a new object m, it adds m into
corresponding subgraph’s active object table. The complexity
is O(1).

LNAV Table L. For a new object, we discuss how to add it
into the LNAV table later.

For a V-Tree which does not contain any object, each LNAV
entry in V-Tree is set to 〈∞, φ〉, and the active object of each
vertex is φ. The A and L tables will be updated when objects
are added.

C. Implementing SPDist Function on V-Tree

Given two vertices u and v on the road network, SPDist
(u, v) computes the shortest-path distance from u to v. We
consider the following two cases.

Algorithm 1: Add(m, v)

Input: m, v // adding m to vertex v
1 if v.status = inactive then
2 LGv [v] = 〈0, v〉;
3 for each vertex u in Gv do
4 if LGv [u].δ > SPDist(v, u) then
5 LGv [u] ← 〈SPDist(v, u), v〉;
6 propagation ← true;
7 while Gv �= G0 and propagation do
8 propagation ← false ;
9 for each border β in B(Gp

v) ∩ B(Gv) do
10 if LGv [β].δ < LG

p
v
[β].δ then

11 LG
p
v
[β] ← LGv [β];

12 propagation ← true;

13 for each border β′ in B(Gp
v)− B(Gv) do

14 d ← min
β ∈ B(Gv)

L
G

p
v
[β].γ = v

LG
p
v
[β].δ + SPDist(β, β′);

15 if LG
p
v
[β′].δ > d then

16 LG
p
v
[β′] ← 〈d, v〉;

17 Gv ← parent of Gv;

18 v.status ← active;

19 add m to A[v] ;

u, v in the same leaf subgraph. SPDist (u, v) is directly got-
ten from the leaf distance matrix D[u][v]. The time complexity
of this case is O(1).

u, v in different leaf subgraphs. We utilize a dynamic-
programming algorithm [31] to compute SPDist (u, v). The
basic idea is as follows. We first location the leaf subgraphs
Gv and Gu of v and u respectively, which can be implemented
by a hash table. Then we compute the least common ancestor
LCA of Gv and Gu, and the nodes on the paths from LCA to
Gv and Gu. Next we enumerate the combinations of borders
in these nodes to compute the shortest-path distance. We can
utilize the dynamic-programming algorithm [31] to share the
computations.

D. Updates on V-Tree

As the road network will not change frequently, we focus
on how to update the locations of active objects on V-Tree.

There are four cases for updating an active object m.

Case 1. Adding a new object m on edge (u, v) and driving
to v. For example, an object, e.g., a taxi, becomes free from
busy. We use algorithm Add(m, v) to add m to v.

Case 2. Deleting an object m from edge (u, v). For example,
an object, e.g., a taxi, becomes busy from free. We use
algorithm Del(m, v) to delete m from v.

Case 3. Object m is still on edge (u, v) and driving to v, but
the offset from m to v is changed. Vertex v is still an active
vertex of m. We only need to update the offset of m in A[v].
The update complexity of this case is O (1).

Case 4. Object m is moving to edge (v, w) from edge (u, v).
m is not an active object of v and becomes an active object
of w. We require to delete m from v and add m to w. Thus
we call the functions Del(m, v) and Add(m,w).
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Fig. 4. Adding m4 to v7

Thus we only need to consider two functions Del(m, v)
and Add(m, v). Next we discuss how to implement these two
functions.

1) Adding m to Vertex v, Add(m, v): There are two cases
for v. (i) Before adding m to v, v is already an active vertex,
which already contains at least one object. The status of v will
not change. Thus all LNAV entries on V-Tree will not change.
We just add m into A[v]. (ii) Before adding m to v, v is
an inactive vertex. The state of v will change from inactive
to active. We need to add m into A[v]. As v may become
the LNAV for some borders in the subgraphs containing v, we
need to update the LNAV entries for such borders. Note v will
not become the LNAV for borders in the subgraphs that do not
contain v. In this way, we only need to check the leaf node
containing v, Gv , and its ancestors. To this end, we propose a
bottom-up method to update the LNAV and the pseudo code is
shown in Algorithm 1.

Updating Leaf Graph Gv . Consider a vertex u in Gv

whose LNAV is not v, i.e., LGv
[u].γ = w and w 	= v. If

SPDist(v, u) < SPDist(w, u), v should be the LNAV of u and
we should update L[u]Gv

.γ to v (lines 5-6 in Algorithm 1).
Note that both SPDist(v, u) and SPDist(w, u) can be found
from the pre-calculated distance matrix D in Gv .

Updating The Ancestors of Gv . If the LNAV of a border β in
Gv is changed and v becomes the LNAV in Gv , i.e., LGv

[β].γ =
v, v also becomes the LNAV of β in Gv’s parent Gp

v , and thus
we need to update the LNAV for its parent. The update may
also influence other borders that are not in Gv , because it may
shorten the distance from v to such border. Next we propose
a three-step method to update Gp

v .

Step 1. For each border β in B(Gp
v) ∩ B(Gv), if LGv [β].δ <

LGp
v
[β].δ, we update LGp

v
[β] as LGv

[β].

Step 2. For each border β′ in B(Gp
v) − B(Gv), if ∃β ∈

B(Gp
v) ∩ B(Gv), LGp

v
[β].δ + SPDist(δ, δ′) < LGp

v
[β′].δ, we

update LGp
v
[β′] as 〈LGp

v
[β].δ + SPDist(δ, δ′),LGp

v
[β].γ〉.

Step 3. If the LNAV of some borders in Gp
v are updated, we

require to update the parent of Gp
v; otherwise the algorithm

terminates.

Iteratively, we perform these steps on the parent node of
Gp

v until reaching the root node.

For example, in Figure 4, we show how to add object m4

to vertex v7 from the V-Tree shown in Figure 3. The LNAV
tables and distance matrices before adding m4 are shown in
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Fig. 5. Deleting m3 from v8

Figure 4 (B) and (C), respectively. We first change the status of
v7 to active and check whether v7 becomes the LNAV of other
vertices in G4. LG4

[v6] is updated to 〈2, v7〉. Next, because
v6 is a border in G4, LG1

[v6] is updated to be 〈2, v7〉 by
lines 9-12 in Algorithm 1. The LNAV of v2 and v3 are refined
by lines 13-16 in Algorithm 1. Iteratively, the L table of G0

(the parent of G1) needs to be updated too. LG0
[v2], LG0

[v3],
and LG0

[v6] are directly propagated from G1. LG0
[v9] and

LG0
[v13] are refined accordingly. Since G0 is the root, the

process terminates.

2) Removing m from Vertex v, Del(m, v): There are two
cases for v. (i) After removing m from v, v is still an active
vertex. The status of v will not change. Thus the LNAV will
not change. We only need to remove m from A[v]. (ii) After
removing m from v, v become an inactive vertex. We remove
m from A(v) and recalculate the LNAV where v was the LNAV
for some borders in the subgraphs containing v.

Similar to Add (m,v), next we propose a bottom-up method
to update LNAV, and the pseudo code is shown in Algorithm 2.

Updating Leaf Graph Gv . Consider a vertex u in Gv with
LGv [u].γ = v. We set LGv [u] as 〈∞, φ〉. We find the active
vertex w with the minimum distance to u, and update LGv [u]
as 〈SPDist(w, u), w〉.
Updating The Ancestor of Gv . Suppose Gp

v is the parent
node of Gv . Consider a border β in Gp

v with LGp
v
[β].γ = v.

We need to update it. We also adopt a 3 step method.

Step 1. For each border with LGp
v
[β].γ = v, we first set

LGp
v
[β] = 〈∞, φ〉.

Step 2. We recalculate LGp
v
[β] based on borders in Gp

v . For
each border β′ in Gp

v , say β′ is the boundary vertex of
Gj , Gj ∈ C(Gp

v), if LGj [β
′].δ + SPDist(β′, β) < LGp

v
[β], we

update LGp
v
[β] by 〈LGj [β

′].δ + SPDist(β′, β),LGj [β
′].γ〉.

Step 3. If the LNAV of some borders in Gp
v are updated, we

require to update the parent of Gp
v; otherwise the algorithm

terminates.

Iteratively, we perform these steps on the parent node of
Gv until reaching the root node.

In Figure 5, we show an example of deleting m3 from v8
on the V-Tree of Figure 2. The leaf subgraph containing v8 is
G4. We update LNAV of v6, v7, and v8 with 〈∞, φ〉. And then
the LNAV of v6, v7, and v8 are updated to 〈10, v5〉,〈10, v5〉,and
〈8, v5〉 by the active vertex v5, respectively. We then move
on to the parent graph of G4, which is G1. We first reset the
LNAV of v3 and v6 to 〈∞, φ〉. Then we find v4 as the LNAV
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Algorithm 2: Del(m, v)

Input: m, v // deleting m from vertex v
1 if v only has one active vehicle then
2 v.status ← inactive ;
3 for each vertex u in Gv s.t. LGv [u].γ = v do
4 LGv [u] ← 〈∞, φ〉 ;
5 for each active vertex w ∈ Gv do
6 if LGv [u].δ > SPDist(w, u) then
7 LGv [u] ← 〈SPDist(w, u), w〉;

8 propagation ← true ;
9 while Gv �= G0 and propagation do

10 propagation ← false ;
11 for each border β s.t. LG

p
v
[β].γ = v do

12 LG
p
v
[β] ← 〈∞, φ〉 ;

13 propagation ← true ;
14 d ← min

β′ ∈ B(Gj)

Gj ∈ C(G
p
v)

SPDist(β′, β) + LGj [β
′].δ;

15 LG
p
v
[β] ← 〈d,LGj [β

′].γ〉;
16 Gv ← parent of Gv ;

17 remove m from A[v];

for v3 in G1 through LG4
[v3]δ = 7, and v4 for v6 through

LG3
[v4].δ + SPDist(v4, v6) = 9. Iteratively, the LNAV of G0

(the parent of G1) needs to be updated next.

Correctness of Updating Algorithms.

Theorem 1: The two updating algorithms, Add and Del,
correctly maintain the LNAV tables on V-Tree.

Time Complexity of Updating Algorithms.

Lemma 2: If updating a moving object does not change
the state of vertex, the complexity of an update is O(1). If the
updating operation changes the state, the average complexity
of an update on V-Tree is

O(
|V | logmin(|V |, |M|)

|M| ).

where |V | is the number of vertices and |M| is the number of
objects.

IV. KNN ALGORITHM

A. Overview of kNN Algorithm

Given a query q = 〈v, k〉, the kNN query returns top-k
active objects ranked by shortest-path distance to v. For any ac-
tive object m, we know that SPDist(m, v) = SPDist(u, v)+
δ(m,u), where u is the active vertex of m and δ(m,u) is
the distance from m to u. Note that δ(m,u) is usually much
smaller than SPDist(u, v). Based on this observation, we first
find the global NAV of v, denoted by u, and take the active
objects of u as the top-k candidates of v. Then we mark u as
inactive, and find the next global NAV of v, u′. If SPDist(u′, v)
is larger than the distance of the k-the candidate, denoted by
ε (i.e., SPDist(u′, v) ≥ ε) we can safely terminate. Next we
formally introduce the algorithm.

Suppose we have two functions gnav(v) and nnav(v, u) to
find the global NAV and the next global NAV of v, respectively.
The discovered top-k moving objects are stored in a priority
queue R of size k, i.e., it only keeps k objects with the k
shortest SPDist to v.

Algorithm 3: knn(v, k)
Input: v: query location; k: the number of nearest neighbors
Output: R: k nearest objects to v

1 Priority queue R ← Φ;
2 ε=maximal distance of candidates in R to v(initialized as ∞);
3 u = gnav(v);
4 for each active object 〈m, δ〉 ∈ A[u] do
5 if SPDist(u, v) + δ < ε then
6 R.Enqueue(〈m, SPDist(u, v) + δ〉);
7 Update ε;

8 while true do
9 u = nnav(v, u);

10 if SPDist(u, v) ≥ ε then
11 break;
12 for each active object 〈m, δ〉 ∈ A[u] do
13 if SPDist(u, v) + δ < ε then
14 R.Enqueue(〈m, SPDist(u, v) + δ〉);
15 Update ε;

16 return R;

Then knn(v, k) works in three steps. (i) It maintains a
priority queue with k candidate objects to v. Let ε denote
the maximal distances from the candidates to v in the priority
queue, which is initialized as ∞ (lines 1-2). (ii) It finds the
global NAV u of v and d = SPDist(u, v) by calling gnav(v).
It adds the active objects into the priority queue (lines 3-7 in
Algorithm 3). (iii) It marks u inactive and finds the next global
NAV u of v and d = SPDist(u, v) by calling nnav(v, u). If d >
ε, which means the active objects of u cannot be kNN result
of v, and the algorithm terminates (lines 10-11); otherwise,
it adds the active objects of u into the priority queue (lines
12-15). Iteratively, the algorithm finds the top-k results.

B. Function gnav(v)

There are two cases for the global NAV of v. (i) v and
its global NAV are in the same leaf subgraph. We can find
the global NAV by exploring all the active vertices in the leaf
subgraph and find the nearest one. (ii) v and its global NAV
are in two different leaf subgraphs, in which case the shortest
path from the global NAV to v must pass-by a boundary vertex
of the leaf subgraph or its ancestor subgraphs containing v by
Lemma 1. Therefore, we only need to explore the boundary
vertices of these subgraphs and find the one connecting the
global NAV. In other words, the global NAV of v must be in the
local NAV in the nodes from Gv to the root.

Next we discuss how to compute the global NAV from the
local NAV. Suppose Gv is the leaf node of v. Consider an
ancestor of Gv , Ga

v . For any boundary vertex β in Gv , let

LNAVDistGa
v
(β, v) = SPDist(β, v) + L[β]Ga

v
.δ

denote the local NAV distance from w = LGa
v
[β].γ to v in Ga

v .
The vertex w with the minimal local NAV distance is the global
NAV as stated in Lemma 3.

Lemma 3: Given a vertex v, suppose Gv is its leaf node
and let

β = arg min
u∈B(Ga

v),u∈B(Gv)
LNAVDistGa

v
(u, v)

where Ga
v is an ancestor node of Gv . w = LGa

v
[β].γ is the

global NAV of v.
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Function gnav(v)

Input: v: query location;
Output: the global NAV of v

1 u = argminβ∈B(Gv) LNAVDistGv (β, v);
2 ε ← LNAVDistGv (u, v);
3 while Gp

v �= NULL and SPDist(Gp
v, v) < ε do

4 u′ = argminu′∈B(G
p
v),u′∈B(Gv)

LNAVDistGp
v
(u′, v);

5 if LNAVDistGp
v
(u′, v) < ε then

6 u = u′;
7 ε ← LNAVDistGp

v
(u, v);

8 Gp
v ← parent of Gp

v ;

9 return LG
p
v
[u].γ;

Thus a simple method is to enumerate every local NAV
in the nodes from Gv to the root. However this method will
enumerate every ancestors of Gv , and next we propose an
efficient method which can skip many unnecessary nodes. To
achieve this goal, we have two observations.

Observation 1. Monotone Non-Decreasing. Given an ances-
tor of Gv , Ga

v , let

SPDist(Ga
v , v) = min

β∈B(Ga
v)
SPDist(β, v).

We have SPDist(Gv, v) ≤ SPDist(Ga
v , v) as stated in

Lemma 4.

Lemma 4: Given two nodes Gv and Ga
v , where Gv is the

leaf node of v and Ga
v is an ancestor of v, we have

SPDist(Gv, v) ≤ SPDist(Ga
v , v).

Observation 2. Early Termination. Let

LNAVDist(Ga
v , v) = min

β∈B(Ga
v)
LNAVDistGa

v
(β, v).

Consider two ancestors of Gv , Gp
v and Ga

v , where Ga
v is the

parent of Gp
v .If the LNAV distance of Gp

v (LNAVDist(Gp
v, v))

is not larger than SPDist(Ga
v , v), i.e.,

LNAVDist(Gp
v, v) ≤ SPDist(Ga

v , v)

we can skip Ga
v and its ancestors, because the vertices in them

have larger distance based on the monotone non-decreasing
property and Lemma 3.

Based on these two observations, we propose a bottom-
up method to explore the borders of subgraphs containing v,
which is shown in Function gnav.

Exploring The Vertices in Leaf Graph Gv . Suppose Gv

is the leaf subgraph containing v. Consider an active vertex
u in Gv , u is also the NAV of itself in Gv , so we compute
the vertex u in the leaf with the minimal distance (line 2 in
Function gnav).

Exploring The Borders in Ancestors of Gv . Let Gp
v

be the parent subgraph of Gv . ε holds the minimum of
LNAVDistGv

(u, v). If SPDist(Gp
v, v) ≥ ε; the algorithm

terminates. On the contrary, if SPDist(Gp
v, v) < ε, we find

GNAV in Gp
vand compute the vertex with the minimal LNAV in

Gp
v . If there is a vertex in Gp

v with smaller distance, we select
the vertex with the minimal distance (lines 4-7).

For example, in Figure 6 we illustrate how to search the
global NAV of v7 on the V-Tree shown in Figure 3. G4 =

v2 v6v3 v4 v5

v4v3v2v1 v8v7v6v5

G0

v9 v10 v13

v9 v10 v11 v12

Level 2

G1 G2

G6G5G4G3
v16v15v14v13

v13v9v6v3v2

2

2

Fig. 6. Searching the global NAV for v7

Function nnav(v, u)

Input: v: query location; u the previous returned global NAV
of v

Output: the next global NAV of v
1 ˜G ← Inactivate(u) ;
2 return gnav(v) ;

Leaf(v7) and v8 is the NAV to v7 in G4 with SPDist(v8, v7)=2.
The parent graph of G4 is G1. Since SPDist(G1, v7) = 2, any
active vertex that passes borders in G1 and its ancestor graphs
to v7 must have a distance greater or equal to 2. The algorithm
terminates and returns v8 as the global NAV for v7.

Calculating SPDist(β, v) efficiently. Given two ancestor
graphs Gm and Gn, Gn = PG(Gm), the SPDist from
the boundary vertices of Gn to v are computed based on
the SPDist from the boundary vertices of Gm to v, i.e., if
β ∈ B(Gn),

SPDist(β, v) = min
βj∈B(Gm)

SPDist(β, βj) + SPDist(βj , v).

Hence, the SPDist from the borders of Gm to v are repeatedly
used when computing the SPDist from the borders of Gn to v.
We can utilize the dynamic programming to avoid duplicated
computation.

C. Function nnav(v, u)

Suppose u is the global NAV of v found by the last gnav
or nnav call. The function nnav(v, u) finds the next GNAV of
v by two steps: (i) inactivating u on V-Tree, and (ii) finding
the next GNAV by calling gnav(v), as shown in Function nnav.

Inactivating u on V-Tree. In order to find the next GNAV
of v based on the LNAV tables maintained on V-Tree, we
need to change the status of u from active to inactive and
let the borders who has u as their local LNAV finds new ones.
Note that, this procedure is identical to function Del as if
we delete the last moving object of u. However, we cannot
directly update the LNAV tables on V-Tree when answering
a kNN query due to concurrency control issues. Instead, for

each query we maintain a local buffer G̃ to save the updated
LNAV entries. Let Inactivate(u) be the function to update
LNAV tables as if u changes from active to inactive, and the

updated entries are saved in G̃ (line 1 in Function nnav). LG̃
will first return values from the local buffer if the local buffer
has them, and from the V-Tree otherwise.

Finding The Next GNAV. We directly call gnav(v) on G̃ with
the updated LNAV tables after inactivating u (line 2). gnav(v)
returns the current GNAV of v.

nnav(v) works on a slightly modified G̃ and explores from
the leaf node Gv containing v to its ancestor graphs until the
global NAV of v is found. Hence, we may explore unchanged
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Fig. 7. Progressing of knn(v5, 2)

subgraphs multiple times. To avoid such repeated calculation,
we introduce a priority queue Q to record the explored borders
and their LNAVDist in functions gnav and nnav. We keep

the top entry of Q updated with the most recent G̃ and the
updates of other non-top entries can be delayed (other non-top
entries in Q are irrelevant to the final result this time, because
LNAVDist of a border can only be increased on the most recent

G̃). We also record the subgraph Gs where we stopped in
the last gnav or nnav call. If the early termination condition
does not hold anymore, i.e., the current shortest distance in
Q becomes larger than SPDist(Gs, v), we need to resume the
exploration from Gs and continue with its ancestor graphs until
the global NAV of v is found.

For example, we show knn(v5, 2) in Figure 7. We show the
graph and the active object table in Figure 7 (A), and the LNAV
tables and R after each iteration in Figure 7 (B), where the
local LNAV buffer only keeps the updated entries. In the first
iteration, gnav(v5) = v5. We add 〈m2, 0.5〉 to R and ε =∞.
In the second iteration, nnav(v5, v5) = v4. We add 〈m1, 2〉 to
R and ε = 2. In the third iteration, nnav(v5, v4) = v8. Since
SPDist(v8, v5) > ε, the algorithm terminates.

D. Correctness of knn

Theorem 2: Functions gnav, nnav, and algorithm knn
correctly find the global NAV, the next global NAV, and the
k nearest moving objects of v, respectively.

E. Time Complexity of knn

Lemma 5: Given a graph G and V-Tree, which contains
|V | vertices and |M| moving objects on the road network.
Assume moving objects are uniformly distributed on the
road network, the average time complexity of kNN search is

O(
k · |V | · logmin(|V |, |M|)

|M| ).

V. EXPERIMENT

We evaluated the performance of V-Tree and compared
with baseline approaches, including index construction, kNN
queries, updates, and scalability of V-Tree.

Datasets: Road Network. We used seven real-world road
networks, which were widely used in previous studies [31],
[16], [25]. The size of the datasets varied from 21,048 to 24
million vertices, as illustrated in Table II.

Datasets: Query and Object. We used two real-world datasets
BJTaxi and SpecialCar. BJTaxi was obtained from real taxi
trajectories in Beijing, which contained 28,000 taxi trajectories
from 8:00am to 9:00am on Sept. 30, 2015. SpecialCar

contained trajectories of 16,000 cars from 9:30pm to 10:30pm
on July 15, 2015, which was gotten from a company like Uber.
We first mapped the positions of moving objects and queries
onto the road network using existing methods [4], [24], [19].
The moving objects updated locations in every second. We
showed the number of moving objects, queries per hour, and
queries per second of BJTaxi and SpecialCar in Table III.

For other six datasets, we synthetically generated moving
objects and queries. We randomly selected one percent of
vertices as the initial positions of moving objects, and moving
objects were moving following the same distribution draw
from BJTaxi and SpecialCar. For queries, we generated the
queries similar to BJTaxi and SpecialCar (i.e., the number of
generated queries per second and the number of active objects).
The positions of these queries were randomly selected from the
vertices of each dataset, and they evenly arrived during each
hour. The detailed statistics were illustrated in Table III.

Baseline. We compared our V-Tree with three state-of-the-
art methods, SILC[25], ROAD[16], and G-Tree[31]. The im-
plementations of ROAD and G-Tree were provided by the
authors, SILC was implemented by ourselves. As the SILC,
ROAD, G-Tree do not support kNN query on moving objects
directly, we extended them to support our problem as follows.
We first built indexing structures for a (static) road network.
Then we created an occurrence index, which keeps a map
from a vertex to a list of moving objects that belong to
this vertex. If a vertex has some moving objects, we call
it an active vertex. Next, given a query we computed kNN
active vertices using existing techniques, and added the moving
objects belonging to such vertices into the results. Note that
we may not need to find k active vertices because an active
vertex may contain multiple moving objects and the algorithm
will stop when finding k moving objects. For example, G-
Tree used a best-first algorithm to find kNN active vertices
by traversing the tree from the root. We kept an occurrence
index for each tree node. If a tree node had no moving object,
we pruned the node; otherwise we accessed its children to
compute the active vertices. SILC also used a best-first method
to compute kNN results. We also utilized the occurrence index
to keep the active vertices, computed top-k active vertices and
added moving objects of active vertices into the result set. In
ROAD, we also only considered active vertices based on the
occurrence index and prune other vertices. When the moving
objects were updated, we only updated the occurrence index
and recomputed the top-k results using the static index and the
updated occurrence index. For G-Tree, we set the leaf capacity
τ=32 and the fanout f=4. For ROAD, we set the hierarchy
level l = 8 and fanout f=4.

Metrics. Suppose there were n queries q1 · · · qn in a period.
Before executing qi, we needed to update objects. We used the
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TABLE II. CHARACTERISTICS OF ROAD NETWORKS

Database Description Vertices Edges
BJ Beijing 1,278,984 2,677,984
CALS California 21,048 43,386
COL Colorado 435,666 1,057,066
FLA Florida 1,070,376 2,712,798
NW Northwest USA 1,207,945 2,840,208
CAL California and Nevada 1,890,815 4,657,742
USA Full USA 23,947,347 58,333,344

TABLE III. CHARACTERISTICS OF QUERIES AND OBJECTS

Database Source Objects Queries Updates
per Second per Second

BJTaxi real-world 28000 6 75
SpecialCar real-world 16000 4 60
CALS synthetic 210 1 1
COL synthetic 4357 1 27
FLA synthetic 10704 2 66
NW synthetic 12079 3 174
CAL synthetic 18908 2 116
USA synthetic 239473 94 1469
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Fig. 8. Index Comparison

amortized time Ta =
Tu+

∑n
i=1 Tqi

n , where Tu and Tq were the
update and query time, respectively.

Environment. We conducted experiments on a 64-bit Linux
computer with Intel 3.10GHz i5-3450 CPU and 32GB RAM.
Our program was compiled with G++ 4.9 using the O3 flag.
We did not parallelize the program and used one core.

A. Evaluation on Index Construction
We conducted experiments by varying two parameters:

fanout f and the maximum number of vertices in a leaf node
τ , and the details are in our technical report [1].

We evaluated the V-Tree index building time and space
overhead with G-Tree, SILC, and ROAD on the datasets
CALS, COL, FLA, NW, BJ, and CAL. V-Tree consists of
tree structure, distance matrices, LNAV tables, and active object
tables. Note that the index time of SILC and ROAD was too
long for BJ and CAL, and the results were not reported. As
can be seen from Figure 8, the time of V-Tree was better than
that of SILC and ROAD by almost 3 orders of magnitude,
and 1 order of magnitude faster than G-Tree in all the 6 test
datasets. For example, on FLA, the construction time of V-
Tree was only 29 s, G-Tree consumed 320 s, SILC required
142 hours, and ROAD cost 14 hours. The main reason was
that (1) SILC required to compute the shortest path of every
two vertices which was rather time consuming, (2) ROAD
had to compute and store shortest-path distances of all border
pairs, (3) our bottom-up construction method can reduce many
unnecessary computations than G-tree. For index size, V-Tree
outperformed SILC and ROAD by 1 order of magnitude, and
achieved almost the same result as G-Tree. This is because
(1) the space overhead of SILC is O(|V |1.5) and it was rather
expensive to compute all-pair shortest paths, and (2) ROAD
computed larger numbers of borders than our methods and
needed to store shortest-path distances of all border pairs. Thus
SILC and ROAD took more space and time than ours.
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Fig. 9. Varying K on BJTaxi and SpecialCar Datasets
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Fig. 10. Varying Density on BJTaxi and SpecialCar Datasets

B. kNN Query

We compared our proposed method with state-of-the-art ap-
proaches. The performance of kNN was evaluated in two ways.
The first is the performance on real-world datasets, where we
used the datasets BJTaxi and SpecialCar containing real
trajectories of moving objects and request queries on road
network of BeiJing. As SILC is too expensive and not able
to generate the road index for BJ, we omit this algorithm on
real-world datasets. The other is to evaluate the performance
on varying datasets of synthetic data. As mentioned, we used
the ROAD method with the best performance parameter t = 4,
and l = 8 to generate road index. For V-Tree and G-Tree, we
set f = 4, and τ = 32.

We evaluated the kNN search efficiency of V-Tree, and
used SILC, ROAD, G-Tree as baselines. We varied k, object
distribution, datasets, object distance, and updating interval on
real-world road networks.

Varying k: We evaluated the performance of V-Tree,
ROAD, and G-Tree for kNN query on real-world dataset of
taxi and SpecialCar. We varied k in 1, 5, 10, 20, 50. We
reported the average time on the real datasets, including kNN
search and update time. As can be seen from Figure 9, the
whole histogram is the amortized time, and the bottom part is
the average single query time and the top part is the average
update time. We had the following conclusions. Firstly, the
average time of kNN query of V-Tree is the fastest one among
the three algorithms. The amortized query time of V-Tree was
65 μs for k = 10, while ROAD took nearly 107 μs and G-Tree
took 105 μs. V-Tree method outperformed ROAD by almost
5 orders of magnitude and outperformed G-tree by 2-3 orders
of magnitude. Secondly, the single query time of V-Tree was
also the best one in the three algorithms. When k was 10, the
average query time of V-Tree was 19 μs while ROAD took
105 μs and G-Tree took 104 μs. This was attributed to the
lower updating cost and the efficient query method. ROAD
took much time because it involved many times of Dijkstra
algorithms to compute the shortest-path distance. G-tree was
expensive for updates on moving objects.

Varying Density: We evaluated the performance on vary-
ing object densities in Figure 10. There are 28000 taxis and
16000 Special cars, and the number of vertices was 1,278,984.
We select 0.1%, 0.5%, 1.0%, 1.5% and 2.0% portion of objects
for BJTaxi; 0.2%, 0.4%, 0.6%, 0.8% and 1.0% portion of
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Fig. 11. Varying Distance on BJTaxi and SpecialCar Datasets
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Fig. 12. Varying Updating Interval on BJTaxi and SpecialCar Datasets

objects for SpecialCar. The experiment was conducted by
3,600 queries, and we set k = 10 and evaluated the average
time. We made the following three observations. Firstly, V-
Tree outperformed state-of-the-art G-Tree and ROAD by 2-
3 orders of magnitude for the search time. Secondly, with
the increasing of searched objects, the amortized search time
of the three algorithms all increases. This is because the
overhead of updating increased as the number of objects grew.
Thirdly, the single query time of three algorithms all decreased.
Because of small number of objects and the sparse distribution
of the vertices in the graph, the searching space for the k
nearest objects was increasing by the density decreasing. The
cost of computation will increase by the farther vertices. The
updating cost of V-Tree increased very slightly, which was
more suitable for moving objects indexing.

Varying Distance: We evaluated the performance on vary-
ing object distances in Figure 11. To generate the objects with
varying distances, we first extracted the query position from
the real queries. Then we sorted the objects by their distances
to the query position. The objects were partitioned into 4
equally sized datasets, by their distance, denoted as near, far,
farther, and farthest. We can see that the V-Tree was almost
stable when the distance changed, and outperformed ROAD
and SILC and G-Tree by 2-6 orders of magnitude. ROAD and
SILC needed to compute more vertices for the long distance
objects; while on the contrary V-Tree structure can acquire the
kNN vertices by accessing fewer tree nodes, no matter how far
away the objects were. This means that the method of V-Tree
kNN method is suitable for the different distance of query.

Varying Update Interval: We evaluated the amortized
query time of the algorithms on two real-world datasets
BJTaxi and SpecialCar. We set k = 10 and. We used the
positions of moving objects and queries in this period to
evaluate the updating cost. As illustrated in Figure 12, we
selected the update interval 1 s, 5 s, 10 s, 20 s, and 50 s. We
know that the higher frequency of updating, the fewer updating
objects in the updating period. We can see that with the
update frequency increasing, the cost of amortized query time
declined. The reason is the updating cost declines as the longer
updating period amortized updating interval. Meanwhile, when
updating interval is 1 s, the amortized update time of V-Tree
on BJTaxi and SpecialCar is 44μs and 263 μs respectively.

Various Datasets: We evaluated the performance of the
algorithm on five datasets CALS, COL, FLA, NW and CAL
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Fig. 13. Performance on Varying Datasets

as illustrated in Table III and set k = 10. The number of
vertices varied from 21, 048 to 1, 890, 815. As can be seen
from Figure 13, The amortized time of V-Tree significantly
outperformed G-Tree, ROAD, by more than 3 orders of mag-
nitude, and more than one order of magnitude compared with
SILC. The single query time of V-Tree outperformed other
algorithms by at least one order of magnitude. V-Tree not only
had small kNN search time, but also had small preprocessing
time. Note that although the SILC algorithm was the fastest
one of the other algorithms, the index size was too huge,
e.g. 24GB for NW. In contrast, the size of V-Tree was only
220MB. Since SILC consumed too large amount of memory
and pre-processing time, we did not evaluate it on BJ and CAL
datasets. The superiority of throughput of V-Tree is shown
in Figure 13(c) and Figure 13(d). In addition, the throughput
(including search and update) was slightly decreased with the
increase of dataset.

C. Scalability

We evaluated the scalability of V-Tree from three aspects,
indexing, search and update. Figure 14 showed the result.
Firstly, we evaluated the time and space scalability of V-Tree.
We set k = 10 and |M| = 0.01|V |, and the moving objects
was uniformly distributed. We calculated the average overhead
of 10K random kNN queries. We can see from 14(a) that V-
Tree had very good scalability as the data size increased from
104 to 108. The average search time on the US road network
with 24 million vertices was only 330.96 μs. Secondly, we
evaluated the scalability of the number of moving objects on
road network. We randomly generated uniformly distributed
vertices as the number of moving objects. We set k = 10,
and used BJ. As can be seen form Figure 14(b), searching
time of kNN query decreased by the number of the objects.
This is for the more objects were indexed, the vertex will
be more likely to not change its state between active and
inactive, which means that the influence of moving objects
will decrease. This means that our method was suitable for
huge number of moving objects indexing on road networks.
Thirdly, the throughput (including update and search) slightly
decreased with increase of vertices. Fourthly, Table IV showed
that the index size of V-Tree was scalable. We evaluated the
index size for different datasets, and the number of vertices
increased from 21 thousands to 24 millions. We can see that
the index size of V-Tree increased almost linearly as the size
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of vertices and edges increased.

TABLE IV. INDEX TREE SIZE OF V-TREE

Size CALS COL NW FLA BJ CAL USA
Vertices 21K 435K 1.2M 1.1M 1.2M 1.8M 24M
Edges 43K 1.1M 2.8M 2.7M 2.7M 4.7M 58M
Data 702K 19M 46M 48M 81M 87M 1270M
V-Tree 3.5M 91M 220M 224M 233M 416M 5639M

VI. RELATED WORKS

A. Single Pair Shortest Path Queries
The single pair shortest path (SPSP) queries, which find

the shortest path for two vertices on the road networks, have
been extensively studied, e.g.,G-Tree[31][30], HEPV[12][13],
HiTi[14], TNR[3], CH[7] and PHL[2]. HEPV[12][13] par-
titions the graph by cutting vertices and pre-computes all
the shortest paths between all border pairs. It is both time
consuming and space consuming to store all such pairs,
and cannot support large graphs. Furthermore, HEPV only
considers three layers and it is not clear how to extend it to
support multiple layers. HiTi[14] computes the shortest paths
for objects in different subgraphs by using the A* algorithm.
It utilizes the Euclidean distance to estimate a lower bound of
the road-network distance and then uses the A* algorithm to
prune subgraphs withlarger distances. Transit Node Routing
(TNR)[3] calculates the distances of each vertex to a set of
transit nodes and utilizes the transit nodes to compute the
shortest-path distance. Contraction Hierarchies (CH)[7] first
pre-computes the road network by appending additional edges.
Then bidirectional shortest-path search is used to restrict the
edges leading to more important nodes which reduces the
search spaces. The Pruned Highway Labeling (PHL)[2] uses
highway-based labeling and a preprocessing algorithm to com-
pute the distance. G-Tree[31], [30] is a hierarchy structure to
do kNN query, which also supports SPSP query. An assembly-
based method is proposed to efficiently compute the shortest
path between two vertices. These algorithms cannot support
dynamical updates of moving objects either.

B. kNN Query on Road Networks
Recently, kNN query on road networks has been

extensively studied, such as INE[22], IER[22], ROAD[16],
SILC[25], G-Tree[31][30]. Incremental Euclidean
Restriction(IER)[22] uses Euclidean distance as a pruning
bound to acquire the kNN results. Incremental Network
Expansion(INE)[22] improved IER Euclidean distances bound
by expending searching space from the query location.

A. V-Tree kNN Search Space

result 
explored vertices

query 

query result 

B. G-Tree kNN Search Space

result 
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Fig. 15. V-Tree and G-Tree kNN Search Space Overview

SILC[25] precomputed the shortest paths between all possible
vertices in the network and then made use of Quadtree-based
encoding method to reduce the storage cost. Route Overlay
and Association Directory(ROAD)[16] and G-Tree [31],
[30] extend HiTi and HEPV to support kNN search. ROAD
uses a hierarchical structure, which recursively partitions
the whole graph to a hierarchy of interconnected regional
sub-networks. The shortcuts between the partitioned vertices
are precomputed. It uses the INE-like method to compute the
kNN results by using shortcuts to compute a tighter bound.
G-Tree is a hierarchy structure to compute kNN results on
road networks. It also uses a hierarchical structure and adopts
an assembly-based method to efficiently compute kNN results.
Different from our method, these approaches assume that
the locations of objects are not frequently changed. In our
problem, obviously the locations of objects are dynamically
changed and thus existing algorithms cannot efficiently
support our problem.

V-Tree extends G-Tree to support moving objects. G-
Tree is better than ROAD because G-Tree uses the dynamic-
programing algorithm to compute the shortest-path distance
for two objects across different subgraphs while ROAD uses
the Dijkstra algorithm to compute the shortest paths based on
the boundary nodes in subgraphs. SILC takes |V |1.5 space and
could not support large graphs. Next we explain why V-Tree is
much better than G-Tree. Firstly, in G-Tree, it can only know
which subtrees contain active vertices, and it needs to use the
dynamic-programming algorithm to compute the distance for
objects in different subgraphs. In V-Tree, we utilize the LNAV
structure to keep the nearest active vertex for each border. If
the query and the active vertex are in the same node, it can
directly retrieve the active vertex. If the query and the active
vertex are not in the same node, it can utilize the LNAV structure
to efficiently find the active vertex. In this way, we can avoid
duplicated computation using the LNAV structure. Secondly, G-
Tree uses a top-down manner to traverse the tree structure and
it may visit unnecessary nodes as shown in Figures 15. V-Tree
uses a down-up manner, and it only visits the active vertices
based on the LNAV structure. Thus the search space of V-Tree
is much smaller than G-Tree.

C. Moving Objects Query
There are some studies on finding kNN moving ob-

jects with Euclidean distance, e.g., TPR-Tree[26], Bx-
Tree[11], STR-Tree[23], TB-tree[23], DSI[29], V ∗kNN[21],
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MOVNet[27]. The Time-parameterized R-tree (TPR-tree) [26]
extends R-tree to index moving point objects by Euclidean
distance. The Spatio-Temporal R-tree (STR-tree) [23] extends
R-tree to index spatio-temporal objects. Trajectory-Bundle tree
(TB-tree) uses a hybrid structure to process the trajectories
of moving objects. Bx-Tree[11] enables the B+-Tree to sup-
port range query and kNN queries and continuous queries.
Shortest-Distance-based Tree(SD-Tree)[28] reduces the con-
tinuous query update cost by precomputing some vertices
distances. Dynamic Strip Index(DSI)[29] uses the strip index
structure to support distributed processing on kNN queries
of moving objects. MOVNet[27] uses an in-memory grid
structure to index moving objects. These studies focus on
identifying kNN results for continuous queries. However they
cannot support kNN search on road-network distances.

D. Continuous Query
Some studies focus on continuous k-NN queries [20], [17],

DLMTree[8], COMET[6], which study how to continuously
answer a query, but they do not focus on efficient kNN search
on moving objects in large-scale road networks. Specifically,
[20] uses an incremental monitoring algorithm and a group
monitoring algorithm to share the computation on moving
objects. [17] utilizes the driving directions and speeds to reduce
unnecessary computations. DLMTree[8] focuses on continu-
ous reverse k nearest queries in road networks. COMET[6]
proposes a collaborative framework that combines different
techniques, e.g, safe segment and influence segment, to reduce
the search space. Thus they focus on optimizing a continuous
query and do not emphasize on optimizing kNN search for a
large number of online queries in road networks.

VII. CONCLUSION

In this paper we have studied the kNN search on moving
objects with road-network constraints. We proposed a novel
tree structure V-Tree. We devised an efficient algorithm to
construct the index. We developed efficient strategies to sup-
port updates of moving objects. We designed an efficient kNN
search algorithm using V-Tree. Experimental results show that
our method significantly outperforms baseline algorithms.
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