
1

Runtime Network Routing for Efficient Image
Classification

Yongming Rao, Student Member, IEEE, Jiwen Lu, Senior Member, IEEE, Ji Lin, Student Member, IEEE,
and Jie Zhou, Senior Member, IEEE

Abstract—In this paper, we propose a generic Runtime Network Routing (RNR) framework for efficient image classification, which
selects an optimal path inside the network. Unlike existing static neural network acceleration methods, our method preserves the full
ability of the original large network and conducts dynamic routing at runtime according to the input image and current feature maps.
The routing is performed in a bottom-up, layer-by-layer manner, where we model it as a Markov decision process and use
reinforcement learning for training. The agent determines the estimated reward of each sub-path and conducts routing conditioned on
different samples, where a faster path is taken when the image is easier for the task. Since the ability of network is fully preserved, the
balance point is easily adjustable according to the available resources. We test our method on both multi-path residual networks and
incremental convolutional channel pruning, and show that RNR consistently outperforms static methods at the same computation
complexity on both the CIFAR and ImageNet datasets. Our method can also be applied to off-the-shelf neural network structures and
easily extended to other application scenarios.

Index Terms—Deep network compression, image classification, efficient inference model, reinforcement learning, deep learning

F

1 INTRODUCTION

D EEP neural networks have been proven to be effective
in various areas. Despite the great success, the capabil-

ity of deep neural networks comes at the cost of huge com-
putational burdens and large power consumption, which
is a big challenge for real-time deployments, especially for
embedded systems. To address this, several neural prun-
ing methods have been proposed recently [14], [15], [16],
[34], [56] to reduce the parameters of convolutional neural
networks, which achieve competitive or even slightly better
performance. However, these works mainly focus on reduc-
ing the number of network weights, which have limited
effects on speeding up the computation. More specifically,
fully connected layers are proven to be more redundant
and contribute more to the overall pruning rate, while
convolutional layers are the most computationally dense
part of the network. Furthermore, such pruning strategy
usually leads to an irregular network structure, i.e. with part
of sparsity in convolution kernels, which requires a special
algorithm for speeding up and is hard to harvest actual
computational savings. A surprisingly effective approach
to trade accuracy for the size and the speed is to simply
reduce the number of channels in each convolutional layer.
For example, Changpinyo et al. [9] proposed a method to
speed up the network by deactivating connections between
filters in convolutional layers, achieving a better tradeoff
between the accuracy and the speed.

All these methods produce a static model for all the
input images. However, it is obvious that some of the

• The authors are with the Department of Automation, Tsinghua
University, State Key Lab of Intelligent Technologies and
Systems, and Beijing National Research Center for Information
Science and Technology (BNRist), Beijing, 100084, China.
Email: raoyongming95@gmail.com; lujiwen@tsinghua.edu.cn; lin-
j14@mails.tsinghua.edu.cn; jzhou@tsinghua.edu.cn.

• Partial of this work was presented in [39].

input samples are easier for recognition, which can be
recognized by simpler and faster models. Some other sam-
ples are more difficult, which require more computational
resources to achieve the expected output. For example,
compared to distinguish female faces from man faces, it is
much easier to distinguish background images from faces
(see section 4.2.2). This property is not well exploited in
previous efficient neural frameworks, where input samples
are usually treated equally, and the compression procedure
is conducted over the whole dataset. Since some of the
weights are lost during the pruning process, the network
will lose the ability for some hard tasks forever. We argue
that preserving the whole ability of the network and routing
between different paths of the neural network dynamically
according to the input image is desirable to achieve better
tradeoff between the speed and the accuracy compared
to static efficient methods, which will also not harm the
upper bound ability of the network. Moreover, since the
functionality of different network components is separated
among input samples, each component serves a simpler
and more concentrated functionality, thus requires smaller
complexity.

In this paper, we propose a Runtime Network Rout-
ing (RNR) framework for deep neural network compres-
sion, which selects an optimal path inside the network for
compression. Fig. 1 shows four different types of network
models to illustrate the basic idea of our framework. Unlike
existing static neural network acceleration methods which
employ the structures as shown in Fig. 1(a) and Fig. 1(b),
our method preserves the full ability of the original large
network and conducts dynamic routing at runtime, accord-
ing to the input image and current feature maps, as shown
in Fig. 1(c) and Fig. 1(d). More specifically, the routing is
performed in a bottom-up, layer-by-layer manner, which we
model it as a Markov decision process (MDP) and train an

2

(c) runtime incremental routing network

(d) runtime multi-path routing network

(a) full network (b) static efficient network

Fig. 1. Four different types of models. (a) is the full neural network,
where all the parameters are preserved. (b) is a static efficient model
obtained by pruning some of the connections or directly reducing the
parameter size. (c) is a runtime incremental routing network. It has the
same number of parameters as the full model, while only part of the
network is routed according to the input image in an incremental way.
(d) is a multi-path network, where there are several smaller branches.
The network routes between one of the branches to obtain higher
accuracy-calculation tradeoff. (c) and (d) are the models used in our
RNR framework.

agent with reinforcement learning to learn the best policy for
routing. The agent determines the estimated reward of each
sub-path and conducts routing conditioned on different
samples, where a faster path is taken when the image is
easier for the task. Since the ability of network is fully
preserved, the balance point is easily adjustable according
to the available resources. We tested our method on both
the multi-path residual network and the incremental con-
volutional channel pruning. Experimental results on both
the CIFAR [30] and ImageNet [52] datasets show that our
framework successfully learns to allocate different amount
of computational resources for different input images, and
achieves much better performance at the same cost.

The contributions of this work are summarized as fol-
lows:

1) We propose a runtime incremental routing network
that dynamically routes between output channels
of convolutional layers. The framework selects an
incremental number of feature map channels to
accelerate the inference for simple images.

2) We propose a runtime multi-path routing network,
where each block contains several small convolu-
tional residual branches. By routing in one specific
branch, the network learns to obtain competitive
performance at much lower computational costs.

3) We conduct experiments on both the CIFAR [30]
and ImageNet [52] datasets, and our experimental
results demonstrate that our method consistently

outperforms static methods at the same computa-
tion complexity.

2 RELATED WORK

In this section, we briefly review four related topics: 1)
CNN-based image classification, 2) deep network pruning,
3) deep reinforcement learning, and 4) dynamic network.

2.1 CNN-based Image Classification

Convolutional neural networks (CNN) have dominated
many computer vision tasks since AlexNet [31] won the
ImageNet Challenge ILSVRC 2012 [52] by large margins.
The network has been growing deeper and more compli-
cated to achieve higher accuracy [19], [54], [60], [63]. VGG-
16 [54] is among the first attempts to train a very large
and deep model. Inception [63] uses a specially designed
module to improve the parameter efficiency. ResNet enables
training of models deeper than 100 layers with residual con-
nections. While the network is getting deeper and heavier,
it brings considerable computational burdens during infer-
ence. There has been rising interest in building small and
efficient networks [20], [25], [50], [65]. Wang [65] propose
to accelerate the inference of CNN by matrix factorization
of weights. SqueezeNet [25] presents a specially designed
Fire module to achieve the AlexNet-level accuracy with
50x fewer parameters. Recently, MobileNet [20] utilizes the
depthwise separable convolutions and gains state-of-the-art
results among lightweight models.

2.2 Deep Network Pruning

There has been several works focusing on deep network
pruning, which is a valid way to reduce the network
complexity. For example, Hanson and Pratt [16] introduced
hyperbolic and exponential biases to the pruning objective.
Damage [34] and Surgeon [17] pruned the networks with
second-order derivatives of the objective. Han et al. [14], [15]
iteratively pruned near-zero weights to obtain a pruned net-
work with no loss of accuracy. Some other works exploited
more complicated regularizers. For example, [36], [67] in-
troduced structured sparsity regularizers on the network
weights, [46] put them to the hidden units. [21] pruned
neurons based on the network output. Anwar et al. [2]
considered channel-wise and kernel-wise sparsity, and pro-
posed to use particle filters to decide the importance of con-
nections and paths. Another aspect focuses on deactivating
some subsets of connections inside a fixed network archi-
tecture. LeCun et al. [33] removed connections between the
first two convolutional feature maps in a uniform manner.
Depth multiplier method was proposed in [20] to reduce the
number of filters in each convolutional layer by a factor in
a uniform manner. These methods produced a static model
for all the samples, failing to exploit the different property
of input images. Moreover, most of them produced irregular
network structures after pruning, which makes it hard to
harvest actual computational savings directly.

3

2.3 Deep Reinforcement Learning

Reinforcement learning [40] aims to enable the agent to
decide the behavior from its experiences. Unlike conven-
tional machine learning methods, reinforcement learning is
conducted through the reward signals of actions. Deep re-
inforcement learning [44] is a combination of deep learning
and reinforcement learning, which has been widely used
in recent years. For examples, Mnih et al. [44] combined
reinforcement learning with CNN and achieved the human-
level performance in the Atari game. Caicedo et al. [8] intro-
duced reinforcement learning for active object localization.
Zhang et al. [68] employed reinforcement learning for vision
control in robotics. Reinforcement learning has also been
adopted for feature selection to build a fast classifier [4],
[18], [28]. [4] proposed an algorithm to build sparse decision
DAGs (directed acyclic graphs) from a list of base classifiers
such as AdaBoost. A coach network is adopted for imitation
learning in [18] to build a cost-sensitive dynamic feature se-
lection framework. Karayev et al. [28] proposed a dynamic,
closed-loop policy that infers the contents of the image for
timely object recognition, aiming to decide which detector
to deploy next, which is learned from execution traces using
reinforcement learning.

2.4 Dynamic Network

Dynamic network structures and executions have been stud-
ied in previous works [7], [11], [37], [47], [53], [57], [58].
Some input-dependent execution methods rely on a pre-
defined strategy. Cascaded methods [35], [37], [57], [58]
employ manually-selected thresholds to control execution.
Dynamic capacity Network [1] used a specially designed
method to compute a saliency map for control execution.
Other conditional computation methods activate parts of a
network under a learned policy. Bengio et al. [6] introduced
Stochastic Times Smooth neurons as gaters for conditional
computation within a deep neural network, producing a
sparse binary gater to be computed as a function of the
input. Bengio et al. [5] selectively activated output of a fully-
connected neural network, according to a control policy
parameterized as the sigmoid of an affine transformation
from last activation. Liu et al. [41] proposed Dynamic Deep
Neural Networks (D2NN), a feed-forward deep neural
network that allows selective execution with self-defined
topology, where the control policy is learned using single
step reinforcement learning. In their work, control node is
a part of network structure, thus special network design is
needed, which cannot be directly applied to prevalent net-
work architectures such as VGG [54] and ResNet [19]. One
work that is very related to the framework in [55], which
learns a sequential decision process over the filters of a
convolutional neural network (CNN). However, the method
aims to improve the overall accuracy after the feature map is
calculated, which cannot be utilized for acceleration. It also
uses a gradient-free evolutionary algorithm, while we use
the gradient-based method. There have been some efforts
on learning an input-dependent model for path planning
in neural network [11], [53]. Denoyer et al. [11] proposed
an end-to-end learning framework to simultaneously learn
successive representations and paths, where an extension
of policy gradient method is introduced. Shazeer1 et al. [53]

encoder i

RNN

conv
kernels
Ki

feature maps
Fi-1

decoder i

global average pooling prune

encoder i+1 decoder i+1

prune

...

calculated pruned

feature maps
Fi

feature maps
Fi+1

conv
kernels
Ki+1

RNN ...

global average pooling

Fig. 2. The overall framework of our RNP. RNP consists of two sub-
networks: the backbone CNN network and the decision network. The
convolution kernels of backbone CNN network are dynamically pruned
according to the output Q-value of the decision network, conditioned on
the state forming from the last calculated feature maps.

successfully applied the idea of mixtures of experts in nature
language processing applications with very large models.
The method employs a gating network to select experts from
thousands of candidates, which significantly accelerates
large language model and achieve state-of-the-art perfor-
mance. Apart from efficient inference, dynamic network is
also adopted during training, such that information will be
passed through fewer connections, providing faster training
and stronger regularizer. Stochastic depth [22] randomly
drops a subset of layers and bypasses them with the iden-
tity function during training. A random forward/backward
training technology for two-path residual network [13] is
proposed for deep neural network regularization, where
hidden features are fed to random branches of residual
block.

3 APPROACH

In this section, we detail the proposed Runtime Network
Routing (RNR) framework. We first present the Runtime
Neural Pruning (RNP) method for adaptive channel prun-
ing, which is built on the methodology of bottom-up and
layer-by-layer Markov decision in an incremental manner.
Then we show how to employ this idea to build efficient
multi-path dynamic network architectures.

3.1 Runtime Neural Pruning
Fig. 2 shows the overall framework of our RNP method.
Specifically, RNP consists of two sub-networks, the back-
bone CNN network and the decision network, which de-
cides how to prune the convolution kernels conditioned on
the input image and current feature maps. Since convolu-
tional layers are the most computationally dense layers in
a CNN, we focus on the pruning of convolutional layers in
this work, leaving fully connected layers as a classifier.

3.1.1 Bottom-up Runtime Pruning
We denote the backbone CNN with m convolutional layers
as C , with convolutional layers denoted as C1, C2, ..., Cm,
whose kernels are K1,K2, ...,Km, respectively, with the
size of ni × ni−1 × k × k, i = 1, 2, ...,m, where k, ni−1 and

4

ni are kernel size, the numbers of input and output chan-
nels of Ki respectively. These convolution layers produce
feature maps Fi ∈ Rni×H×W , i = 1, 2, ...,m by applying
corresponding filters Kj

i ∈ Rni−1×k×k, j = 1, 2, ...ni on the
input ni−1 channels, where one output channel is generated
by one filter. Given feature maps Fi, i = 1, 2, ...,m− 1, our
method is designed to find and prune the redundant output
feature maps in Fi+1 and corresponding convolutional fil-
ters in Ki+1 to reduce computation and achieve maximum
performance simultaneously. Note that here we focus on
filter-level pruning instead of arbitrary kernel-pruning to
achieve actual speed up during inference, so our method
prunes certain filters and related kernels at the same time.

Taking the i-th layer as an example, we denote our goal
as the following objective 1:

min
Ki+1,h

EFi [Lcls(conv(Fi,Ki+1[h(Fi)])) + Lpnt({h(Fk)}ik=1)],

(1)
where Lcls is the loss of the classification task, Lpnt is the
penalty term that reflects the computional cost of the i-th
layer, which also represents the tradeoff between the speed
and the accuracy, h(Fi) is the conditional pruning unit that
produces a list of indexes of selected output filters according
to the input feature map, K[·] is the indexing operation
for filter pruning and conv(x1, x2) is the convolutional
operation for the input feature map x1 and kernel x2. Note
that our framework infers through standard convolutional
layers after filter-level pruning, which can be easily boosted
by utilizing GPU-accelerated neural network library such as
cuDNN [10].

To solve the optimization problem in (1), we divide the
whole problem into two sub-problems of {K} and h: 1)
optimizing backbone CNN with given filter selections and
2) find optimal filter selections conditioned on the input
image with given CNN , and adopt an alternate training
strategy to solve each sub-problem independently with the
neural network optimizer such as RMSprop [64].

For an input sample and a m-layer CNN, we need to
decide which filters should be pruned for each layer, in other
words, there are totally m decisions of pruning to be made.
In the proposed framework, we employ a recurrent network
to model the decision procedure and produce these deci-
sions. In order to learn this network, a straightforward idea
is to using the optimized decisions under certain penalties
to supervise the decision network. However, for a backbone
CNN with m layers, the time complexity of collecting the
supervised signal is O(

∏m
i=1 nm), which is NP-hard and

unacceptable for prevalent very deep architecture such as
VGG [54] and ResNet [3]. To simplify the training problem,
we employ the following two strategies: 1) modeling the
network pruning as a Markov decision process (MDP) [49]
and train the decision network by reinforcement learning,
and 2) redefining the procedure of pruning to reduce the
number of possible decisions, which is described as below.

1. Since the first convolution layer has a small number of input
channels that contributes little to the total computational cost and it
is difficult to determine the importance of a filter according to the input
image, we do not apply our pruning method on this layer.

3.1.2 Layer-by-layer Markov Decision Process

The decision network consists of an encoder-RNN-decoder
structure, where the encoder Ei embeds the feature map
Fi into fixed-length code, RNN R aggregates codes from
previous stages, and the decoder Di outputs the Q-value of
each action. We formulate key elements in Markov decision
process (MDP) based on the decision network to adopt deep
Q-learning in our RNP framework as follows.

State: Given feature map Fi, we first extract a dense
feature embedding pFi with global average pooling, as
commonly conducted in [12], [51], whose length is ni. Since
the number of channels for different convolutional layers
are different, the length of pFi varies. To address this, we
use the encoder Ei (a fully connected layer) to project
the pooled feature into a fixed-length embedding Ei(pFi).
Ei(pFi) from different layers are associated in a bottom-up
way with a RNN structure, which produces a latent code
R(Ei(pFi)), regarded as embedded state information for
reinforcement learning. The decoder (also a fully connected
layer) produces the Q-value for decision.

Action: The actions for each pruning are defined in an
incremental way. For the convolution kernel Ki with ni
output channels, we determine which output channels to be
calculated and which to be pruned. To simplify the process,
we group the output feature maps into k sets, denoted as
F′1,F

′
2, ...,F

′
k. One extreme case is k = ni, where one single

output channel forms a set. The actions a1, a2, ..., ak are
defined as follows: taking actions ai yields calculating the
feature map groups F′1,F

′
2, ...,F

′
i, i = 1, 2, ..., k. Hence the

feature map groups with lower index are calculated more,
and the higher indexed feature map groups are calculated
only when the sample is difficult enough. Specially, the first
feature map group is always calculated, which we mention
it as base feature map group. Since we do not have state
information for the first convolutional layer, it is not pruned,
with totally m− 1 actions to take.

While the definitions of actions are rather simple, one
can easily extend the definition for more complicated net-
work structures. Like Inception [61] and ResNet [3], we
define the action based on unit of a single block by sharing
pruning rate inside the block, which is more scalable and
can avoid considering about the sophisticated structures.

Reward: The reward of each action taken at the t-th step
with the action ai is defined as:

rt(ai) =

{
−αLcls + (i− 1)× p, t = m− 1,
(i− 1)× p, t < m− 1

(2)

where the agent gets penalty according to computational
complexity after every decision and gets rewards according
to classification loss when inference terminates, and p is a
negative penalty that can be manually set. The reward was
set according to the loss for the original task. We took the
negative loss −αLcls as the final reward so that if a task
is completed better, the final reward of the chain will be
higher, i.e., closer to 0. α is a hyper-parameter to rescale
Lcls into a proper range, since Lcls varies a lot for different
network structures and different tasks. Taking actions that
calculate more feature maps, i.e., with higher i, will bring
higher penalty due to more computations. For t = 1, ...,m−
2, the reward is only about the computation penalty, while

5

Algorithm 1 : Runtime neural pruning for solving optimiza-
tion problem (1)
Input: training set with labels {X}
Output: backbone CNN C , decision network D

1: initialize: train C in normal way or initialize C with
pre-trained model

2: for i← 1, 2, ...,M do
3: // train decision network
4: for j ← 1, 2, ..., N1 do
5: Sample random minibatch from {X}
6: Forward and sample ε-greedy actions {st, at}
7: Compute corresponding rewards {rt}
8: Backward Q values for each stage and generate
∇θLre

9: Update θ using ∇θLre
10: end for
11: // fine-tune backbone CNN
12: for k ← 1, 2, ..., N2 do
13: Sample random minibatch from {X}
14: Forward and calculate Lcls after runtime pruning

by D
15: Backward and generate ∇CLcls
16: Update C using ∇CLcls
17: end for
18: end for
19: return C and D

at the last step, the chain will get a final reward of −αLcls
to assess how well the pruned network completes the task.

The key step of the Markov decision model is to decide
the best action at certain state. In other words, it is to find
the optimal decision policy. By introducing the Q-learning
method [44], [66], we define Q(ai, st) as the expectation
value of taking action ai at state st. So the policy is defined
as π = argmaxaiQ(ai, st).

Therefore, the optimal action-value function can be writ-
ten as:

Q(st, ai) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|π], (3)

where γ is the discount factor in Q-learning, providing a
tradeoff between the immediate reward and the prediction
of future rewards. We use the decision network to approxi-
mate the expected Q-value Q∗(st, ai), with all the decoders
sharing parameters and outputting a k-length vector, each
representing the Q∗ of corresponding action. If the estima-
tion is optimal, we will have Q∗(st, ai) = Q(st, ai) exactly.

According to the Bellman equation [3], we adopt the
squared mean error (MSE) as a criterion for training to
keep decision network self-consistent. Hence, we rewrite the
objective for sub-problem of h in optimization problem 1 as:

min
θ
Lre = E[r(st, ai)+γmax

ai
Q(st+1, ai)−Q(st, ai)]

2, (4)

where θ is the weights of decision network. In our proposed
framework, a series of states are created for an given input
image. And the training is conducted using ε-greedy strat-
egy that selects actions following π with probability ε and
select random actions with probability 1− ε, while inference
is conducted greedily. The backbone CNN network and
decision network is trained alternately.

encoder i-1

convolutional blocks
Ci-1

decoder i-1

global average pooling select

encoder i decoder i

select

...

selected path pruned path

convolutional blocks
Ci

convolutional blocks
Ci+1

0100 0001

RNN RNN ...

global average pooling

Fig. 3. Overall framework of our runtime routing for multi-path network. A
decision network is designed to decide which path to take in a multi-path
CNN conditioned on the output of previous layer.

Algorithm 1 details the training procedure of the pro-
posed method, where alternate training is performed for M
iterations and we update decision network N1 times and
backbone CNN N2 times in each iteration.

It is worth noticing that during the training of agent, we
manually set a fixed penalty for different actions and reach a
balance status. While during deployment, we can adjust the
penalty by compensating the output Q∗ of each action with
relative penalties accordingly to switch between different
balance point of accuracy and computation costs, since
penalty is input-independent. Thus one single model can
be deployed to different systems according to the available
resources.

3.2 Runtime Routing for Multi-Path Network

While RNP is designed for pruning neural network at
runtime, our network routing method can be extended to a
more generic framework that selects optimal path inside the
network during inference conditioned on the input image.
Therefore, we design a new method to build efficient multi-
path dynamic network based on network ensemble.

Network ensemble is a widely used technique that has
been proven to be effective in many computer vision tasks
such as image classification [19], [62], object detection [24],
[38] and semantic segmentation [38]. Prediction ensemble
used in [19], [38], [62] can be regarded as a special case
of multi-path CNN that each path of CNN infers inde-
pendently. Except network ensemble, multi-path CNN is
also used as a regularization method to boost classifica-
tion performance of deep neural networks. A random for-
ward/backward training technology for two-path residual
network [13] is proposed for deep neural network regular-
ization, where hidden features are fed to random branches
of residual block and gradients updates parameters of ran-
dom previous branches. In this work, we formulate the
framework of multi-path CNN and propose a runtime net-
work routing method to select an optimal path inside the
multi-path, which extends our RNP method from channel-
wise incremental routing to network path dynamic routing
scenario.

6

conv block
Ci

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼𝑁𝑁

…

𝛼𝛼𝑖𝑖 ← rand(0,1)
𝛼𝛼1 + 𝛼𝛼2 + ⋯+ 𝛼𝛼𝑁𝑁 = 1

…

𝛼𝛼𝑖𝑖 ← 1/N

(a) (b)
… …

… …

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼𝑁𝑁

Fig. 4. Different phases of multi-path CNN. (a) is the training phase and
(b) is the testing phase.

The overall framework of our runtime routing for multi-
path network is shown in Fig. 3. Similar with the above-
mentioned RNP method, a decision network is also de-
signed to decide which path to take in a multi-path CNN
conditioned on the output of the previous layer. The multi-
path CNN network can be a simple extension of any kinds
of CNN structure. To achieve a better trade-off between the
speed and the accuracy, the widths of convolutional layers
in multi-path network are reduced accordingly for different
path number.

3.2.1 Multi-Path CNN
For ease of implementation, we assume that multi-path
CNN consists of several CNN with the same structure in
this work. Let C = [C1, C2, ..., CN] be a multi-path CNN
that has N branches of CNN, where C1, C2, ..., CN are N
CNNs that have the same network architecture. Cn has m
convolutional blocks Cn1 , C

n
2 , ..., C

n
m. Taking the i-th block

in multi-path CNN as an example, for input hidden features
Fi−1, the output of i-th block can be written as:

Fi = σ(C1
i (Fi−1), C

2
i (Fi−1), ..., C

N
i (Fi−1)), (5)

where σ is an aggregation function that takes outputs of M
branches in i-th block as input and produce an aggregated
feature map that has the summarized information from dif-
ferent branch. In this work, we employ a linear interpolation
operator to aggregate the outputs of M branches as follows:

Fi = σ(F 1
i , F

2
i , ..., F

N
i) = α1F

1
i +α2F

2
i + ...+αNF

N
i , (6)

and
α1, α2, ..., αN > 0, α1 + α2 + ...+ αN = 1. (7)

During training, we set {αi} as generated random real
numbers for each mini-batch following [13], and we set αi
to 1

N for all 1 ≤ i ≤ N during testing, which is illustrated
in Fig. 4.

3.2.2 Bottom-up Runtime Branch Routing
After training, we get a multi-path CNN C =
[C1, C2, ..., CN]. Inference through all the M branches and
calculate mean could obtain high performance as mentioned
in [13]. However, it would cost great computational bur-
dens. Our goal is to inference through one single branch in

each block while maintain the highest possible performance,
which will cut the computation by M times.

We denote our goal as the following objective:

min
a1,a2,...,an

E[Lcls(CaNm (...(Ca22 (Ca11 (X)))))], (8)

ai = h(Fi−1) = C
ai−1

i−1 (...(Ca22 (Ca11 (X)))) (9)

where Lcls is the loss of the classification task,X is the input
image to be classified. h(Fi) is the conditional pruning unit
that produces a list of indexes of selected kernels according
to input feature map, and here we used global average
pooling for state extraction.

Same as above RNP framework, we model the network
pruning as a Markov decision process and train the deci-
sion network by reinforcement learning. One of the major
difference is that we used Policy Gradient [59] for training,
since all the actions requires the same computations, and the
only difference is the final output loss. The reward setting is
related to the whole trajectory, which is suitable with Policy
Gradient algorithm.

Since the state is the same as RNP, which is the embed-
ded vectors encoded by global average pooling operation,
encoder layer and RNN in decision network, here we focus
on the formulation of action and reward.

Action: The actions are defined based on stages of net-
work. At each stage, we choose one of the identical branches
for inference. For a block with m branches, there are m
actions a1, a2, ..., am in total. Taking ai yields inference
through branch i, while other branches are not calculated.

The definitions of actions are rather simple but extremely
effective. It does not care about the inner-block structure of
CNNs, which could be very complicated, like Inception [61]
and ResNet [3]. As long as several branches with same
structure are present, we can apply our RNR framework
to accelerate the inference.

Reward: Since all the m branches share the same struc-
ture and computational complexity, the reward function
only contains classification loss Lcls. We define the reward
function over the whole trajectory T as

r(T) = −Lcls (10)

The reward was set according to the loss for the original
task. We took the negative loss −Lcls as the final reward
so that if a task is completed better, the final reward of the
trajectory will be higher, i.e., closer to 0.

The key step of the Markov decision model is to decide
the best action at certain state. In other words, it is to find the
optimal decision policy. By introducing the Policy Gradient
method, we define Q(ai, st) as the expectation value of
taking action ai at state st. So the policy is defined as
π = argmaxaiPolicy(ai, st) = argmaxaiπ(ai|s, θ).

The general idea behind the Policy Gradient method is to
increase the possibility of favorable actions while reducing
the unfavorable ones. The parameters in decision network
can be learned as follows:

θ ← θ + α∇θ log πθ(st, at)r. (11)

However, it can be inefficient to train the decision network
following Equation 11 in practice, since the variance of the

7

Algorithm 2 : Runtime network routing for solving opti-
mization problem (8)
Input: training set with labels {X}
Output: Multi-path CNN C, decision network D

1: initialize: train C according to Section 3.2.1.
2: for i← 1, 2, ...,M do
3: // train decision network Fix multi-path CNN C
4: for j ← 1, 2, ..., N1 do
5: Sample random minibatch from {X}
6: Forward and sample actions with distribution
h(Fi) layer-by-layer

7: Compute corresponding rewards of trajectory
{rt = r(T)}

8: Update θ using Equation 12
9: end for

10: // fine-tune backbone CNN Fix decision network D
11: for k ← 1, 2, ..., N2 do
12: Sample random minibatch from {X}
13: Forward and calculate Lcls after runtime network

routing by D
14: Backward and generate ∇CLcls
15: Update C using ∇CLcls
16: end for
17: end for
18: return C and D

estimated gradient can be large and leads to unstable train-
ing. Therefore, the policy gradient method can be further
generalized to compute the reward associated with an action
value relative to a reference reward or baseline b. During
training, we adopt the following update equations

θ ← θ + α∇θ log πθ(st, at)(r − b) (12)

where θ is the weights of decision network, α is the update
rate, r is the reward. The baseline b can be any function that
dose not depend on action, because:

Est,at [b∇θ log πθ(st, at)] = b∇θEst,at [log πθ(st, at)]
= b∇θ1
= 0. (13)

(13) shows that adding the baseline b will not change
the expectation of estimated gradient, but it can reduce the
variance of gradient estimate.

In our implementation, we use the reward of the whole
trajectory, i.e. r = r(T) = −Lcls. b is a baseline for reward
r, and we use moving average to update b as:

b← γ ∗ b+ (1− γ) ∗ r (14)

In our experiments, we set γ = 0.99.
Algorithm 2 details the training procedure of the pro-

posed method, where alternate training is performed for M
iterations and we update decision network N1 times and
backbone CNN N2 times in each iteration.

4 EXPERIMENTS

We conducted image classification experiments to eval-
uate our RNP and RNR on three widely used object

image datasets including CIFAR-10, CIFAR-100 [30] and
ILSVRC2012 [52].

For the RNP method, we trained a network of four
convolutional layers with 3×3 kernels and reported experi-
mental results on the CIFAR-10. For CIFAR-100, we used the
VGG-16 network for evaluation. For ILSVRC2012, we report
the results of both VGG-16 and ResNet-50. For results on the
CIFAR dataset, we compared the results obtained by our
RNP and naive channel reduction methods. For results on
the ILSVRC2012 dataset, we compared the results achieved
by our RNP with recent state-of-the-art network pruning
methods.

For the RNR method, we trained three different ResNet
architectures: ResNet-18, ResNet-34, ResNet-50, and re-
ported the results on both CIFAR and ILSVRC2012 datasets
with several different settings.

The details of networks used in our experiments are
summarized in Table 1.

4.1 Datasets and Protocols
We evaluated the proposed RNP and RNR method on three
widely used datasets. Here we give a brief description of
these datasets.

CIFAR-10 & CIFAR-100: The CIFAR-10 and CIFAR-100
dataset consist of 60000 32× 32 colour images. The CIFAR-
10 dataset has 10 classes, with 6000 images per class. There
are 50000 training images and 10000 test images. The test
set contains exactly 1000 randomly-selected images from
each class. The training set contain the remaining images
in random order. The CIFAR-100 dataset is an extension of
the CIFAR-10, which has 100 classes containing 600 images
each. There are 500 training images and 100 testing images
per class.

ILSVRC2012: ImageNet is a very large dataset that con-
tains over 15 million labeled high-resolution images belong-
ing to roughly 22,000 categories. The images were collected
from the web and labeled by human labelers. The ImageNet
Large-Scale Visual Recognition Challenge(ILSVRC) is a part
of Pascal Visual Object Challenge, which is an influential
competition held annually. ILSVRC is a relatively small
subset of ImageNet that has 1000 categories and roughly
1000 images in each category. In the ILSVRC dataset, there
are roughly 1.2 million training images, 50,000 validation
images, and 150,000 testing images. Since the test set la-
bels are not available for ILSVRC2012, we evaluated our
method on the validation set of ILSVRC2012 following
previous works, which is not used during training or hyper-
parameter searching.

4.2 Experiments on RNP
In this section, we present the detailed information about
our evaluations on proposed RNP method, including 1)
implementation details, 2) intuitive experiments, and 3)
results on three datasets.

4.2.1 Implementation Details
We trained RNP in an alternative manner, where the back-
bone CNN network and the decision network were trained
iteratively. To make the training converge faster, we first re-
rank filters in pre-trained model according to their l1-norm

8

TABLE 1
The architecture of models used in our experiments. For ResNet, we show that the building blocks in brackets with the numbers of blocks stacked

following [19], and downing sampling is performed in the first convolutional layer of stage 3, stage 4 and stage 5 with a stride of 2.

4-layer CNN VGG-16 CIFAR VGG-16 ImageNet ResNet-{18,34} ResNet-50

stage 1
3× 3, 64 3× 3, 64 3× 3, 64 7× 7, 64, stride 2
3× 3, 64 3× 3, 64 maxpool
maxpool maxpool

stage 2
3× 3, 32 3× 3, 128 3× 3, 128 [

3× 3, 64

3× 3, 64

]
× {2, 3}

 1× 1, 64

3× 3, 64

1× 1, 256

× 33× 3, 128 3× 3, 128
maxpool maxpool

stage 3

3× 3, 32 3× 3, 256 3× 3, 256 [
3× 3, 128

3× 3, 128

]
× {2, 4}

 1× 1, 128

3× 3, 128

1× 1, 512

× 4
maxpool 3× 3, 256 3× 3, 256

3× 3, 256 3× 3, 256
maxpool maxpool

stage 4

3× 3, 64 3× 3, 512 3× 3, 512 [
3× 3, 256

3× 3, 256

]
× {2, 6}

 1× 1, 256

3× 3, 256

1× 1, 1024

× 6
maxpool 3× 3, 512 3× 3, 512

3× 3, 512 3× 3, 512
maxpool maxpool

stage 5

3× 3, 64 3× 3, 512 3× 3, 512 [
3× 3, 256

3× 3, 256

]
× {2, 3}

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3
maxpool 3× 3, 512 3× 3, 512

3× 3, 512 3× 3, 512
maxpool maxpool

classifier
Parameters 0.6M 15M 138M {11M, 21M} 26M

FLOPs 1.7× 107 3.1× 108 1.5× 1010 {5.5× 108, 1.1× 109} 3.8× 109

for networks without batch normalization layers as [36]
or scaling factors in batch normalization layers as [42] in
the descending order before we assign each filter to a
group. The backbone CNN is then initialized with random
pruning, where we selected random number of filter groups
uniformly for each convolution layer in the forward pass,
i.e., decisions were randomly made. During training, we
fixed the CNN parameters and trained the decision net-
work, regarding the backbone CNN as an environment,
where the agent can take actions and get corresponding
rewards. We fixed the decision network and fine-tuned
the backbone CNN following the policy of the decision
network, which helps CNN specialize in a specific task. The
initialization was trained using SGD, with an initial learning
rate 0.01, decay by a factor of 10 after 120, 160 epochs, with
totally 200 epochs in total. For CIFAR-10 and CIFAR-100
datasets, a standard data augmentation method that consists
of random cropping with padding and random horizontal
flipping was applied. For the ILSVRC2012 dataset, we ran-
domly cropped the resized 256×256 images to 224×224 as
input and random horizontal flipping was also used during
training. The other training progress was conducted using
RMSprop [64] with the learning rate of 1e-6. For the ε-greedy
strategy, the hyper-parameter ε was annealed linearly from
1.0 to 0.1 in the beginning and fixed at 0.1 thereafter.

For most experiments, we set the number of convolu-
tional group to k = 4, which is a trade-off between the
performance and the complicity. Increasing k will enable
more possible pruning combinations, while at the same
time making it harder for reinforcement learning with an
enlarged action space. Since the action is taken conditioned

on the current feature map, the first convolutional layer
is not pruned, where we have totally m − 1 decisions to
make, forming a decision sequence. During the training,
we set the penalty for extra feature map calculation as
p = −0.1. During inference, we compensated the output
of decision network to Q(ai, s) − (i − 1) × p to achieve
different speed-up solutions by adjusting the value of p.
The scale α factor was set such that the average αLcls
is approximately 1 to make the relative difference more
significant. In our implementation, we set the α to 1/L̂cls
where L̂cls is the average classification loss over the past n
epochs (e.g., n = 10) and update α every n epochs to make
the training process stable. For experiments with the VGG-
16 model, we defined the actions based on unit of a single
block by sharing pruning rate inside the block as mentioned
in Section 3.1.2 to simplify implementation and accelerate
convergence. For experiments with the ResNet-50 model,
we pruned the first and the second convolution layers in
a residual block with the same pruning ratio and did not
prune the output feature maps in the last convolution layer
to keep the consistency between the projected mapping and
the residual mapping.

For vanilla baseline methods comparison on the CIFAR
datasets, we evaluated the performance of normal neural
network with the same computations. More specifically, we
calculated the average number of multiplications of every
convolution layer and rounded it up to the nearest number
of channels sharing same computations, which resulted in
an identical network topology with reduced convolutional
channels. We trained the vanilla baseline network with the
SGD until convergence for comparison. All our experiments

9

were implemented using the modified Caffe toolbox [27].

4.2.2 Intuitive Experiments
To have an intuitive understanding of our framework, we
first conducted a simple experiment to show the effective-
ness and undergoing logic of our RNP. We considered a
3-category classification problem, consisting of male faces,
female faces and background samples. It is intuitive to think
that separating male faces from female faces is a much
more difficult task than separating faces from background,
needing more detailed attention, so more resources should
be allocated to face images than background images. In
other words, a good tradeoff for RNP is to prune the neural
network more when dealing with background images and
keep more convolutional channels when inputting a face
image.

To validate this idea, we constructed a 3-category dataset
by using the Labeled Faces in the Wild [23] dataset, which
we referred to as LFW-T. More specifically, we randomly
cropped 3000 images for both male and female faces, and
also 3000 background images randomly cropped from LFW.
We used the attributes from [32] as labels for male and
female faces. All these images were resized to 32×32 pixels.
We held out 2000 images for testing and the remaining
for training. For this experiment, we designed a 3-layer
convolutional network with two fully connected layers.
All convolutional kernels are 3 × 3 and with 32, 32, 64
output channels respectively. We followed the same training
protocol as mentioned above with p = 0.1, and focused on
the difference between different classes.

The original network achieved 91.1% recognition ac-
curacy. By adjusting the penalty, we managed to get a
certain point of accuracy-computation tradeoff, where com-
putations (multiplications) were reduced by a factor of 2,
while obtaining even slightly higher accuracy of 91.75%. We
looked into the average computations of different classes
by counting multiplications of convolutional layers. The
results were shown in Fig. 5. For the whole network, RNP
allocated more computations on faces images than back-
ground images, at approximately a ratio of 2, which clearly
demonstrates the effectiveness of RNP. However, since the
first convolutional layers and fully connected layers were
not pruned, to get the absolute ratio of pruning rate, we
also studied the pruning of a certain convolutional layer. In
this case, we selected the last convolutional layer conv3.
The results are shown on the right figure of Fig. 5. We see
that for this certain layer, computations for face images are
almost 5 times of background images. The differences in
computations show that RNP is able to find the relative
difficulty of different tasks and exploit such property to
prune the neural network accordingly.

4.2.3 Results
CIFAR-10 & CIFAR-100: For CIFAR-10 and CIFAR-100, we
used a four-layer convolutional network and the VGG-16
network for experiments, respectively. The goal of these two
experiments is to compare our RNP with vanilla baseline
network, where the number of convolutional layers was
reduced directly from the beginning. The fully connected
layers of standard VGG-16 are too redundant for CIFAR-
100, so we eliminated one of the fully connected layer and

set the inner dimension as 512. The modified VGG-16 model
was easier to converge and actually slightly outperformed
the original model on CIFAR-100. The results are shown in
Fig. 6. We see that for vanilla baseline method, the accuracy
suffered from a stiff drop when computations savings were
than 2.5 times. While our RNP consistently outperformed
the baseline model, and achieved competitive performance
even with a very large computation saving rate.

ILSVRC2012: We compared our RNP with recent state-
of-the-art network pruning methods [26], [36], [43], [45], [69]
on the ImageNet dataset using the VGG-16 model, including
recent filter pruning methods [36], [43], [45]. We evaluated
the top-5 error using single-view testing on ILSVRC2012-val
set and trained RNP model using ILSVRC2012-train set. The
view was the center 224 × 224 region cropped from the
resized images whose shorter side is 256 by following [69].
RNP was fine-tuned based on the public available model 2

which achieves 10.1% top-5 error on ILSVRC2012-val set.
Results are shown in Table 2, where speed-up is the the-
oretical speed-up ratio computed by the complexity. For
filter pruning method in [36], we set the same pruning
rate for convolution layers in the same stage according
to layer sensitivity and measure the top-5 error after 20
epoch re-training as described in their paper. We see that
RNP achieves similar performance with a relatively small
speed-up ratio with other methods and outperforms other
methods by a significant margin with a large speed-up ratio.
We further conducted our experiments on larger ratio (10×)
and found RNP only suffered slight drops (1.31% compared
to 5×), far beyond others’ results on 5× setting.

4.2.4 Analysis
Analysis of Feature Maps: Since we define the actions in
an incremental way, the convolutional channels of lower
index are calculated more (a special case is the base network
that is always calculated). The convolutional groups with
higher index are increments to the lower-indexed ones,
so the functions of different convolution groups might be
similar to ”low-frequency” and ”high-frequency” filters. We
visualized different functions of convolutional groups by
calculating average feature maps produced by each convo-
lutional group. Specially, we took CIFAR-10 as an example
and visualized the feature maps of conv2 with k = 4. The
results are shown in Fig. 7.

From the figure, we see that the base convolutional
groups have highest activations to the input images, which
can well describe the overall appearance of the object.
While convolutional groups with higher index have sparse
activations, which can be considered as a compensation to
the base convolutional groups. So the undergoing logic of
RNP is to judge when it is necessary to compensate the
base convolutional groups with higher ones: if tasks are
easy, RNP will prune the high-order feature maps for speed,
otherwise bring in more computations to pursue accuracy.

Runtime Analysis: One advantage of our RNP is its
convenience for deployment, which makes it easy to harvest
actual computational time savings. Therefore, we measured
the actual runtime under GPU acceleration, where we mea-
sured the actual inference time and top1/top-5 classification

2. http://www.robots.ox.ac.uk/∼vgg/research/very deep/

10

0

0.1

0.2

0.3

0.4

0.5

0.6

Average Male Female Background

#M
ul
tip

ly
(m

il.
)

Average Mults. of Conv3
(original: 1.180M mults.)

0

0.5

1

1.5

2

2.5

3

Average Male Female Background

#M
ul
tip

ly
(m

il.
)

Average Mults. of Whole Network
(original: 4.950M mults.)

(a) (b)

Fig. 5. The average multiplication numbers of different classes in our intuitive experiment. We show the computation numbers for both the whole
network (on the left) and the fully pruned convolutional layer conv3 (on the right). The results show that RNP succeeds to focus more on faces
images by preserving more convolutional channels while prunes the network more when dealing with background images, reaching a good tradeoff
between accuracy and speed.

0 5 10 15 20 25

#Multiply (mil.)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

A
cc

ur
ac

y
(%

)

RNP
vanilla

0 100 200 300 400

#Multiply (mil.)

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

A
cc

ur
ac

y
(%

)

RNP
vanilla

Fig. 6. The results on CIFAR-10 (on the left) and CIFAR-100 (on the right). For vanilla curve, the rightmost point is the full model and the leftmost is
the 1

4
model. RNP outperforms naive channel reduction models consistently by a very large margin.

accuracy for VGG-16 and ResNet-50 on the ILSVRC2012-val
set. Inference time were measured on a Titan X (Pascal) GPU
with batch size 64. Table 3 shows the GPU inference time of
different settings. We see that our RNP generalizes well on
GPU.

4.3 Experiments on RNR
In this section, we first present the detailed information
about our implementations. Then we show the experimental
results of proposed RNR method. Lastly, we further ana-
lyzed the computational time of RNR.

4.3.1 Implementation Details
Similar with the RNP method, we trained our RNR in an
alternative manner by following the descriptions in Algo-
rithm 2. To accelerate the training procedure of decision
network and backbone multi-path CNN, we conducted 100
epochs hard selection training before RNR training, where
{αi} are randomly generated as one-hot vectors. The multi-
path CNN backbone model was trained using SGD, with

a learning rate of 0.1 which is decreased by 2 every 25
epochs, with 300 epochs standard training and 100 epochs
hard selection training. The decision network was trained
using Adam optimizer [29] with a learning rate of 1e-5. We
set the initial b value as training set accuracy. Other training
details are as in Section 4.2.1. Our experiments for RNR were
implemented using open source software PyTorch [48].

4.3.2 Results
We evaluated our proposed RNR method on ResNet-18 and
ResNet-34 networks. Our proposed multi-path CNN and
runtime routing method were compared in serveral differ-
ent settings, including different numbers of branches (1, 2
or 4), different numbers of channel (1/2 or 1/4 of original
model were denoted as ”ResNet 1×”, ”ResNet 1/2×” and
”ResNet 1/4×” respectively). Furthermore, we compared
our proposed method with 1-branch models that have the
same computational complexity as our models. The detailed
information about our experiments is described as follows.

Comparisons with Original Models: Experimental re-
sults with the ResNet-18 network are summarized in Ta-

11

TABLE 2
Comparisons of increase of top-5 error on ILSVRC2012-val (%) for VGG-16 with recent state-of-the-art methods, where we used 10.1% top-5 error

baseline as the reference.

Speed-up (in FLOPs) 3× 4× 5× 10×
Jaderberg et al. [26] ([69]’s implementation) 2.3 9.7 29.7 -

Asymmetric [69] - 3.84 - -

Filter pruning [36] (our implementation) 3.2 8.6 14.6 -

Taylor expansion [45] 2.3 4.8 - -

ThiNet [43] 1.98 - - 7.94

Ours 2.32 3.23 3.58 4.89

Fig. 7. Visualization of the original images and the feature maps of four convolutional groups, respectively. The presented feature maps are the
average of corresponding convolutional groups.

TABLE 3
The increase of top-1/top-5 error (%) and GPU inference time (ms)

under different theoretical speed-up ratios on the ILSVRC2012-val set.
The Inference time includes runtimes of both backbone CNN and

decision network.

Speed-up solution ∆top-1/top-5 err. Inference time

VGG-16 (1×) 0/0 3.26 (1.0×)

RNP-VGG-16 (3×) 2.98/2.32 1.38 (2.3×)

RNP-VGG-16 (4×) 4.01/3.23 1.07 (3.0×)

RNP-VGG-16 (5×) 4.88/3.58 0.880 (3.7×)

RNP-VGG-16 (10×) 6.12/4.89 0.554 (5.9×)

ResNet-50 (1×) 0/0 2.54 (1.0×)

RNP-ResNet-50 (2×) 2.90/2.14 1.94 (1.31×)

RNP-ResNet-50 (3×) 5.21/3.66 1.68 (1.51×)

ble 4. We see that multi-path can significantly improve the
recognition performance for the original ResNet-18 network
and achieves relatively high performance even when com-
putations savings were more than 4 times. By applying the
proposed runtime routing method, models can be further

accelerated to 16 times, and RNR method can still achieve
very competitive performance even with such large speed-
up rate.

Comparisons with Vanilla Models: To demonstrate the
effectiveness of the proposed method, we conducted abla-
tion experiments where 1-branch models that have the same
complexity were trained as the baselines of runtime routing
models. Results are summarized in Table 5, where we eval-
uated our method for different speed-up solutions (4× and
16×). We see that runtime routing models can consistently
outperform vanilla 1-branch models. As the number of
branch growing, the image classification accuracy grows as
well. It can be observed that performance of our method
can be improved through adding more branches, which
will lead to larger model size, but importantly, constant
computational cost.

4.3.3 Runtime Analysis

Compared to the RNP method, RNR model is composed
of several relatively independent modules. Hence, our RNR
method can harvest even more actual computational time
savings. Table 6 and presents Table 7 the mean inference
time measured on GPU on both CIFAR-100 and ILSVRC2012
datasets for different ResNet networks . We see that RNR

12

TABLE 4
Experimental results on the CIFAR-10 and CIFAR-100 dataset with ResNet-18 for our proposed RNR method. We denote the inference method

that calculate means of M branchs as ”mean” and runtime routing method as ”routing”.

Model # Branch Method CIFAR-10 accuarcy (%) CIFAR-100 accuarcy (%) Speed Up (in FLOPs)

ResNet-18 1 baseline 94.72 77.12 1.0×

ResNet-18 1×

2 Mean 95.36 78.85 0.5×
2 Routing 94.81 78.05 1.0×
4 Mean 95.65 79.41 0.25×
4 Routing 94.98 78.42 1.0×

ResNet-18 1/2×

2 Mean 94.65 76.40 2.0×
2 Routing 94.38 74.89 4.0×
4 Mean 94.95 77.21 1.0×
4 Routing 94.51 75.23 4.0×

ResNet-18 1/4×

2 Mean 93.41 71.75 8.0×
2 Routing 92.87 69.01 16.0×
4 Mean 93.95 73.81 4.0×
4 Routing 93.14 70.87 16.0×

TABLE 5
Comparisons of the image classification accuracy (%) on the CIFAR-10 and CIFAR-100 with vanilla speed-up solutions for ResNet-18 and

ResNet-34. We denote the proposed runtime routing method as ”routing”.

Network Speed-up (in FLOPs) Method # Branch CIFAR-10 accuarcy (%) CIFAR-100 accuarcy (%)

ResNet-18 1× basline 1 94.72 77.12

ResNet-18

4×
vanilla 1 94.34 73.85

ResNet-18 routing 2 94.38 74.89

ResNet-18 routing 4 94.51 75.23

ResNet-18

16×
vanilla 1 92.25 68.14

ResNet-18 routing 2 92.87 69.01

ResNet-18 routing 4 93.14 70.87

ResNet-34 1× basline 1 95.42 78.01

ResNet-34

4×
vanilla 1 94.49 75.69

ResNet-34 routing 2 94.62 76.32

ResNet-34 routing 4 94.75 76.99

ResNet-34

16×
vanilla 1 92.99 71.73

ResNet-34 routing 2 93.21 73.01

ResNet-34 routing 4 93.43 73.72

can easily obtain actual speed-up rates that are very close
with theoretical speed-up rates with standard hardware
environment and prevalent deep learning libraries.

5 CONCLUSION

In this paper, we have proposed a generic Runtime Net-
work Routing (RNR) framework for deep neural network
compression. Unlike existing static neural network acceler-
ation methods, our RNR selects an optimal path inside the
network and preserves the full ability of the original large
network. To achieve the idea of dynamic routing, we have

modeled the network compression problem as a bottom-
up, layer-by-layer Markov decision process, and employed
reinforcement learning to train the network. The decision
determined the estimated reward of each sub-path and
conducts routing conditioned on different samples, where
a faster path was taken when the image is easier for the
task. Since the ability of network can be fully preserved, the
balance point is easily adjustable according to the available
resources. We have evaluated our method on both the multi-
path residual network and the incremental convolutional
channel pruning, and shown that RNR consistently outper-
forms static methods at the same computation complexity

13

TABLE 6
The GPU inference time under different theoretical speed-up ratios on
the CIFAR-100 dataset. The Inference time includes runtimes of both

backbone CNN and decision network.

Speed-up solution ∆ err. (%) Inference time (ms)

ResNet-18 (1×) 0 2.68 (1.0×)

ResNet-18 (4×) 1.89 0.88 (3.0×)

ResNet-18 (16×) 6.25 0.279 (9.6×)

ResNet-34 (1×) 0 4.58 (1.0×)

ResNet-34 (4×) 1.02 1.43 (3.2×)

ResNet-34 (16×) 4.29 0.449 (10.2×)

TABLE 7
The increase of top-1/top-5 error (%) and GPU inference time (ms)

under different theoretical speed-up ratios on the ILSVRC2012-val set.
The Inference time includes runtimes of both backbone CNN and

decision network.

Speed-up solution ∆ top-1/top-5 err. Inference time

ResNet-50 (1×) 0/0 1.56 (1.0×)

ResNet-50 (4×) 6.23/4.44 0.47 (3.3×)

on both the CIFAR and ImageNet datasest. How to apply
our proposed method to other computer vision applications
such as object detection and semantic segmentation seems
to be an interesting future work as efficient inference model
is also desirable.

ACKNOWLEDGMENTS

This work is supported in part by the National Key Re-
search and Development Program of China under Grant
2017YFA0700802, and the National Natural Science Founda-
tion of China under Grants U1713214, 61672306, 61572271,
and 61527808, and Shenzhen fundamental research fund
(subject arrangement) under Grant JCYJ20170412170602564.

REFERENCES

[1] A. Almahairi, N. Ballas, T. Cooijmans, Y. Zheng, H. Larochelle,
and A. Courville, “Dynamic capacity networks,” ICML, 2016.

[2] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” JETC, 2017.

[3] R. Bellman, “Dynamic programming and lagrange multipliers,”
PNAS, vol. 42, no. 10, pp. 767–769, 1956.

[4] D. Benbouzid, R. Busa-Fekete, and B. Kégl, “Fast classification
using sparse decision dags,” ICML, 2012.

[5] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional
computation in neural networks for faster models,” ICLRW, 2016.

[6] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional compu-
tation,” arXiv preprint arXiv:1308.3432, 2013.

[7] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive
neural networks for fast test-time prediction,” ICML, 2017.

[8] J. C. Caicedo and S. Lazebnik, “Active object localization with
deep reinforcement learning,” in ICCV, 2015, pp. 2488–2496.

[9] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power
of sparsity in convolutional neural networks,” arXiv preprint
arXiv:1702.06257, 2017.

[10] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cudnn: Efficient primitives for deep
learning,” arXiv preprint arXiv:1410.0759, 2014.

[11] L. Denoyer and P. Gallinari, “Deep sequential neural network,”
NIPS Workshop, 2014.

[12] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. P.
Vetrov, and R. Salakhutdinov, “Spatially adaptive computation
time for residual networks.” in CVPR, vol. 2, no. 3, 2017, p. 7.

[13] X. Gastaldi, “Shake-shake regularization,” arXiv preprint
arXiv:1705.07485, 2017.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and
huffman coding,” ICLR, 2016.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in NIPS, 2015, pp. 1135–
1143.

[16] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal
network construction with back-propagation,” in NIPS, 1989, pp.
177–185.

[17] B. Hassibi, D. G. Stork et al., “Second order derivatives for network
pruning: Optimal brain surgeon,” NIPS, pp. 164–164, 1993.

[18] H. He, J. Eisner, and H. Daume, “Imitation learning by coaching,”
in NIPS, 2012, pp. 3149–3157.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[21] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming:
A data-driven neuron pruning approach towards efficient deep
architectures,” arXiv preprint arXiv:1607.03250, 2016.

[22] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in ECCV. Springer, 2016, pp.
646–661.

[23] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments,” Technical Report 07-49, University
of Massachusetts, Amherst, Tech. Rep., 2007.

[24] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama et al.,
“Speed/accuracy trade-offs for modern convolutional object de-
tectors,” CVPR, 2017.

[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[26] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” BMVC, 2014.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” ACMMM, 2014.

[28] S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell, “Timely object
recognition,” in NIPS, 2012, pp. 890–898.

[29] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ICLR, 2015.

[30] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” Tech. Rep., 2009.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012,
pp. 1097–1105.

[32] N. Kumar, A. Berg, P. N. Belhumeur, and S. Nayar, “Describable
visual attributes for face verification and image search,” PAMI,
vol. 33, no. 10, pp. 1962–1977, 2011.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[34] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,”
in NIPS, 1990, pp. 598–605.

[35] S. Leroux, S. Bohez, E. De Coninck, T. Verbelen, B. Vankeirs-
bilck, P. Simoens, and B. Dhoedt, “The cascading neural network:
building the internet of smart things,” Knowledge and Information
Systems, pp. 1–24, 2017.

[36] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” ICLR, 2017.

[37] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional
neural network cascade for face detection,” in CVPR, 2015, pp.
5325–5334.

[38] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” CVPR, 2017.

14

[39] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in
NIPS, 2017, pp. 2178–2188.

[40] M. L. Littman, “Reinforcement learning improves behaviour from
evaluative feedback,” Nature, vol. 521, no. 7553, pp. 445–451, 2015.

[41] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution,” AAAI, 2018.

[42] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in
ICCV. IEEE, 2017, pp. 2755–2763.

[43] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” CVPR, 2017.

[44] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[45] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,”
ICLR, 2017.

[46] K. Murray and D. Chiang, “Auto-sizing neural networks: With
applications to n-gram language models,” EMNLP, 2015.

[47] A. Odena, D. Lawson, and C. Olah, “Changing model behavior at
test-time using reinforcement learning,” ICLRW, 2017.

[48] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors
and dynamic neural networks in python with strong gpu acceler-
ation,” 2017.

[49] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[50] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in ECCV. Springer, 2016, pp. 525–542.

[51] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in NIPS,
2015, pp. 91–99.

[52] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[53] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer,” ICLR, 2017.

[54] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” ICLR, 2015.

[55] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, “Deep
networks with internal selective attention through feedback con-
nections,” in NIPS, 2014, pp. 3545–3553.

[56] N. Ström, “Phoneme probability estimation with dynamic sparsely
connected artificial neural networks,” The Free Speech Journal,
vol. 5, pp. 1–41, 1997.

[57] C. Sun, M. Paluri, R. Collobert, R. Nevatia, and L. Bourdev,
“Pronet: Learning to propose object-specific boxes for cascaded
neural networks,” in CVPR, 2016, pp. 3485–3493.

[58] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network
cascade for facial point detection,” in CVPR, 2013, pp. 3476–3483.

[59] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in NIPS, 2000, pp. 1057–1063.

[60] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning.” in AAAI, 2017, pp. 4278–4284.

[61] ——, “Inception-v4, inception-resnet and the impact of residual
connections on learning.” in AAAI, vol. 4, 2017, p. 12.

[62] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015, pp. 1–9.

[63] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in CVPR,
2016, pp. 2818–2826.

[64] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude,” COURSERA:
Neural networks for machine learning, vol. 4, no. 2, 2012.

[65] M. Wang, B. Liu, and H. Foroosh, “Factorized convolutional neural
networks,” ICCVW, 2017.

[66] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[67] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in NIPS, 2016, pp. 2074–2082.

[68] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion con-
trol,” ACRA, 2015.

[69] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep
convolutional networks for classification and detection,” PAMI,
vol. 38, no. 10, pp. 1943–1955, 2016.

Yongming Rao is a fourth-year undergraduate
student at Tsinghua Univeristy, Beijing, China,
advised by Dr. Jiwen Lu at the Department
of Automation of Tsinghua University. His cur-
rent research interests include computer vision
and deep learning, where he has published 4
top computer vision conference papers such
as ICCV’2017, NIPS’2017 and CVPR’2018. He
was a recipient of the Sensetime Undergraduate
Scholarship in 2017.

Jiwen Lu received the B.Eng. degree in me-
chanical engineering and the M.Eng. degree in
electrical engineering from the Xi’an University
of Technology, Xi’an, China, and the Ph.D. de-
gree in electrical engineering from the Nanyang
Technological University, Singapore, in 2003,
2006, and 2012, respectively. He is currently
an Associate Professor with the Department of
Automation, Tsinghua University, Beijing, China.
His current research interests include computer
vision, pattern recognition, and machine learn-

ing. He serves as an Associate Editor of the IEEE Trans. on Circuits and
Systems for Video Technology, the IEEE Trans. on Biometrics, Behav-
ior, and Identity Sciences, Pattern Recognition, and Journal of Visual
Communication and Image Representation. He was a recipient of the
National 1000 Young Talents Program of China in 2015 and the National
Science Fund for Excellent Young Scholars in 2018, respectively. He is
a senior member of the IEEE.

Ji Lin is a fourth-year undergraduate student at
Tsinghua Univeristy, Beijing, China, advised by
Dr. Jiwen Lu at the Department of Automation
of Tsinghua University. His current research in-
terests include computer vision and deep learn-
ing, where he has published 3 top computer
vision conference papers such as CVPR’2017,
ICCV’2017 and NIPS’2017.

Jie Zhou received the BS and MS degrees both
from the Department of Mathematics, Nankai
University, Tianjin, China, in 1990 and 1992, re-
spectively, and the PhD degree from the Institute
of Pattern Recognition and Artificial Intelligence,
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 1995. From then to
1997, he served as a postdoctoral fellow in the
Department of Automation, Tsinghua University,
Beijing, China. Since 2003, he has been a full
professor in the Department of Automation, Ts-

inghua University. His research interests include computer vision, pat-
tern recognition, and image processing. He is an associate editor for
the IEEE Trans. on Pattern Analysis and Machine Intelligence and three
other journals. He received the National Outstanding Youth Foundation
of China Award. He is a senior member of the IEEE.

