
Supplementary Material

1. Implementation Details: Classification
We train the models on the standard 9,843 training set

and evaluate on the 2,468 test set. Following the practice
in [1], we add small random perturbations and rotations on
both the input point clouds and the vertices on the highest
fractal level. To project n points of size n × 3 to N vertex
features of size N × C, we firstly find the k-nearest points
for each vertex according to the angles between vertex and
points to get N groups of neighboring points of size k × 3
(N ×k×3 in total). Then, we feed each group of neighbor-
ing points of size k×3 to a small PointNet model described
in our paper to obtain the feature of length C for each ver-
tex. The projection model consists of 3 fully-connected lay-
ers, where a Non-Local layer [2] is used before the last layer
and we apply maxpool operation on the outputs of these 3
layers to summarize the features of k sampled points for
each vertex. Note that we only apply the Non-Local opera-
tion on the k points that are assigned to the same vertex, and
keep the features of different vertices independent. We use
the global max pooling operation to summarize the output
features of each stage, and concatenate these summarized
features to form the global representation of the input point
cloud. There are 3 fully-connected layers in the classifier,
and we randomly dropout features followed by the last layer
with 80% probability. For models that are trained with the
invertibility constraint, we further add a module f to map
the features on lattices to the input points. Specifically, we
map feature on each vertex to 4 3D points using the idea
of [3], where we concatenate a 2D coordinate for each fea-
ture to generate 4 different points from the same feature (in
our case, (−α,−α), (−α, α), (α,−α) and (α, α) are used
and we set α to 0.3). Then, the reconstruction error of input
points X and the reconstructed points X̂ =

⋃
i f(Fi) can

be computed following:

dCH(X, X̂) = max{ 1

|X|
∑
x∈X

min
x̂inX̂

||x− x̂||2,

1

|X̂|

∑
x̂∈X̂

min
x∈X
||x− x̂||2}.

(1)

The detailed architectures of projection modules and f
are summarized in Table 1 and Table 2 respectively.

Table 1. The detailed architecture of projection module. N is the
number of points and c the dimension of original feature of each
point (for example, c = 3 means xyz input).

input size output size layer type
N × c N4 × k × c assign points

N4 × k × c N4 × k × 8K fully-connected
N4 × k × 8K N4 × k × 8K fully-connected
N4 × k × 8K N4 × k × 8K Non-Local
N4 × k × 8K N4 × k × 16K fully-connected
N4 × k × 16K N4 × 16K maxpool

Table 2. The detailed architecture of f .

input size output size layer type
N4 × 4× (16K + 2) N4 × 4× 8K fully-connected

N4 × 4× 8K N4 × 4× 4K fully-connected
N4 × 4× 4K N4 × 4× 3 fully-connected

2. Implementation Details: Retrieval
We train the models for 3D shape retrieval with arbitrary

rotations to improve the performance when perturbed 3D
point clouds are used for evaluation. During training, we
randomly sample b/4 point clouds from the training set and
add 3 other positive examples for each of these point clouds
to form a mini-batch, where b is the size of mini-batch.
We perform the online hard example mining for both pos-
itive examples and negative examples. More specifically,
for each sample x, we find the the positive example xp that
has the lowest similarity with x and the negative example
xn that has the highest similarity with x in the mini-batch.
Then, the triplet loss can be defined as:

Ltriplet = max(s(x, xn)− s(x, xp) + β, 0), (2)

where s(x, y) is the cosine similarity between x and y, and
β = 0.3 is the margin value.

3. Implementation Details: Part Segmentation
For part segmentation task, an encoder-decoder network

is used to predict per-point labels. We use the classifica-
tion network as the encoder network. For the decoder net-

1

Figure 1. Visualization of the input point clouds and the features from different hierarchies. The 4 columns of each group represent input
point clouds, outputs of the projection module, low-level features and high-level features respectively. Best viewed in color.

work, one symmetry convolution block is added after the
up-sample layer for each fractal level. For each points, we
concatenate 3D coordinate with features from nearest ver-
tex of different fractal levels to form the final feature of each
point. Then, a 3-layer MLP (512, 256, C) is used to obtain
the final predictions. Similar to classification task, we add
a dropout layer before the last fully-connected layer. Other
details are similar with [1].

4. Visualization
The visualization of input point clouds, projection fea-

tures, low-level features and high-level features with differ-
ent rotations is presented in Figure 1. We can see that the
activations from different hierarchies are all rotation invari-
ant, thus our model is resistant to arbitrary rotations on input
point clouds.

References
[1] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems, pages 5099–5108, 2017. 1, 2

[2] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. arXiv preprint
arXiv:1711.07971, 10, 2017. 1

[3] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), volume 3, 2018. 1

2

